L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (1.93 + 3.34i)5-s − 0.999·8-s + 3.86·10-s + (−1.86 + 3.23i)11-s + (−3.34 − 5.79i)13-s + (−0.5 + 0.866i)16-s − 5.41·17-s − 2.96·19-s + (1.93 − 3.34i)20-s + (1.86 + 3.23i)22-s + (−0.732 − 1.26i)23-s + (−4.96 + 8.59i)25-s − 6.69·26-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.863 + 1.49i)5-s − 0.353·8-s + 1.22·10-s + (−0.562 + 0.974i)11-s + (−0.928 − 1.60i)13-s + (−0.125 + 0.216i)16-s − 1.31·17-s − 0.680·19-s + (0.431 − 0.748i)20-s + (0.397 + 0.689i)22-s + (−0.152 − 0.264i)23-s + (−0.992 + 1.71i)25-s − 1.31·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.906 - 0.422i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.906 - 0.422i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2824610033\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2824610033\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.93 - 3.34i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.86 - 3.23i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.34 + 5.79i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 5.41T + 17T^{2} \) |
| 19 | \( 1 + 2.96T + 19T^{2} \) |
| 23 | \( 1 + (0.732 + 1.26i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2 - 3.46i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.896 + 1.55i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 0.535T + 37T^{2} \) |
| 41 | \( 1 + (0.637 + 1.10i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.86 - 3.23i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.27 + 9.14i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 2.92T + 53T^{2} \) |
| 59 | \( 1 + (4.31 + 7.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.48 - 6.03i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.76 + 4.79i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2.53T + 71T^{2} \) |
| 73 | \( 1 + 6.83T + 73T^{2} \) |
| 79 | \( 1 + (-2.46 + 4.26i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (8.95 - 15.5i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 7.07T + 89T^{2} \) |
| 97 | \( 1 + (-2.94 + 5.10i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.574561371991877491296204832487, −8.496720219760658030331470105179, −7.41880970457059544708140571057, −6.91806850617042504344356826466, −6.02284862111188440633053835623, −5.30661259627762050408821434425, −4.43455129530864611982071996938, −3.25172321820602094673481521430, −2.50328272933896766731377753227, −2.01315004944959364625017501023,
0.07095824895457260543716385948, 1.68586049708528770384364895035, 2.59186221571628398739512422838, 4.22872081607499093208044891056, 4.55927519368810514731502984619, 5.46752460545639044315292510904, 6.08275805207656798495479558244, 6.85833473542704846314411127727, 7.82859547118256878659844455259, 8.724296826846589891789188042102