Properties

Label 2-2640-44.43-c1-0-21
Degree $2$
Conductor $2640$
Sign $0.301 - 0.953i$
Analytic cond. $21.0805$
Root an. cond. $4.59135$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + 5-s − 0.968·7-s − 9-s + (3.16 + i)11-s + 4.13i·13-s + i·15-s − 0.968i·17-s + 5.09·19-s − 0.968i·21-s − 7.06i·23-s + 25-s i·27-s + 3.16i·29-s + (−1 + 3.16i)33-s + ⋯
L(s)  = 1  + 0.577i·3-s + 0.447·5-s − 0.366·7-s − 0.333·9-s + (0.953 + 0.301i)11-s + 1.14i·13-s + 0.258i·15-s − 0.234i·17-s + 1.16·19-s − 0.211i·21-s − 1.47i·23-s + 0.200·25-s − 0.192i·27-s + 0.587i·29-s + (−0.174 + 0.550i)33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.301 - 0.953i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.301 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2640\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 11\)
Sign: $0.301 - 0.953i$
Analytic conductor: \(21.0805\)
Root analytic conductor: \(4.59135\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2640} (1231, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2640,\ (\ :1/2),\ 0.301 - 0.953i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.976871349\)
\(L(\frac12)\) \(\approx\) \(1.976871349\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 - T \)
11 \( 1 + (-3.16 - i)T \)
good7 \( 1 + 0.968T + 7T^{2} \)
13 \( 1 - 4.13iT - 13T^{2} \)
17 \( 1 + 0.968iT - 17T^{2} \)
19 \( 1 - 5.09T + 19T^{2} \)
23 \( 1 + 7.06iT - 23T^{2} \)
29 \( 1 - 3.16iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 - 9.06T + 37T^{2} \)
41 \( 1 - 11.4iT - 41T^{2} \)
43 \( 1 + 0.968T + 43T^{2} \)
47 \( 1 + 8iT - 47T^{2} \)
53 \( 1 + 3.06T + 53T^{2} \)
59 \( 1 - 3.06iT - 59T^{2} \)
61 \( 1 - 4.38iT - 61T^{2} \)
67 \( 1 - 5.06iT - 67T^{2} \)
71 \( 1 - 9.06iT - 71T^{2} \)
73 \( 1 - 0.257iT - 73T^{2} \)
79 \( 1 + 3.16T + 79T^{2} \)
83 \( 1 - 2.19T + 83T^{2} \)
89 \( 1 + 2T + 89T^{2} \)
97 \( 1 - 9.06T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.127792044691086116937555926994, −8.517882580717967235673553634179, −7.37752204309825200940853921506, −6.59256596152431159720654707563, −6.07222511561800039706921380205, −4.92590766264386205524245026430, −4.35504448385580465885560137157, −3.38763652850889313629775705886, −2.41727817557103050911643753240, −1.17468005716145731613494875714, 0.74895398931156652786746570772, 1.76759714115748091924669606319, 3.01521114200887218548432875308, 3.63707373255549921050933749270, 4.94679143032949224121488525706, 5.88015422119776261237570257512, 6.20209022175637510859180390333, 7.33099908521649964242788999468, 7.77192778444578472799886832976, 8.732126010039124222771402956322

Graph of the $Z$-function along the critical line