Properties

Label 2-2610-145.144-c1-0-11
Degree $2$
Conductor $2610$
Sign $0.132 - 0.991i$
Analytic cond. $20.8409$
Root an. cond. $4.56518$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + (−1.82 − 1.29i)5-s + 2.99i·7-s + 8-s + (−1.82 − 1.29i)10-s − 1.08i·11-s − 1.37i·13-s + 2.99i·14-s + 16-s − 0.212·17-s + 6.70i·19-s + (−1.82 − 1.29i)20-s − 1.08i·22-s + 1.06i·23-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + (−0.816 − 0.576i)5-s + 1.13i·7-s + 0.353·8-s + (−0.577 − 0.407i)10-s − 0.328i·11-s − 0.381i·13-s + 0.800i·14-s + 0.250·16-s − 0.0514·17-s + 1.53i·19-s + (−0.408 − 0.288i)20-s − 0.232i·22-s + 0.221i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.132 - 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.132 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2610\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 29\)
Sign: $0.132 - 0.991i$
Analytic conductor: \(20.8409\)
Root analytic conductor: \(4.56518\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2610} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2610,\ (\ :1/2),\ 0.132 - 0.991i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.886457012\)
\(L(\frac12)\) \(\approx\) \(1.886457012\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + (1.82 + 1.29i)T \)
29 \( 1 + (2.49 + 4.77i)T \)
good7 \( 1 - 2.99iT - 7T^{2} \)
11 \( 1 + 1.08iT - 11T^{2} \)
13 \( 1 + 1.37iT - 13T^{2} \)
17 \( 1 + 0.212T + 17T^{2} \)
19 \( 1 - 6.70iT - 19T^{2} \)
23 \( 1 - 1.06iT - 23T^{2} \)
31 \( 1 - 4.22iT - 31T^{2} \)
37 \( 1 + 5.72T + 37T^{2} \)
41 \( 1 - 10.3iT - 41T^{2} \)
43 \( 1 - 10.8T + 43T^{2} \)
47 \( 1 + 6.38T + 47T^{2} \)
53 \( 1 - 10.0iT - 53T^{2} \)
59 \( 1 - 5.28T + 59T^{2} \)
61 \( 1 + 3.38iT - 61T^{2} \)
67 \( 1 - 10.2iT - 67T^{2} \)
71 \( 1 - 5.04T + 71T^{2} \)
73 \( 1 - 3.51T + 73T^{2} \)
79 \( 1 + 8.85iT - 79T^{2} \)
83 \( 1 - 12.4iT - 83T^{2} \)
89 \( 1 - 2.95iT - 89T^{2} \)
97 \( 1 + 16.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.922960019397147196241117719235, −8.137975014671039107452576249092, −7.71897975572611820544963868921, −6.56914027391558388070911746418, −5.71591504735283936041342601664, −5.26387356971250220835435262189, −4.23685782487571271888063011386, −3.50497876090509752449305229702, −2.57193732775563004888614130040, −1.33428953038037950829302248859, 0.49676529042737460921118936047, 2.09757993340309384272631865177, 3.17420632972180342506595239864, 3.96888675068550113068417108554, 4.52127680805673555364951356541, 5.44686168139164730351752337424, 6.73681035426170823697806235378, 6.99670625982291139651170361401, 7.62046901648004695390587923251, 8.583703063141241780276365396311

Graph of the $Z$-function along the critical line