Properties

Label 2-261-261.101-c1-0-13
Degree $2$
Conductor $261$
Sign $-0.000120 - 0.999i$
Analytic cond. $2.08409$
Root an. cond. $1.44363$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.571 + 1.31i)2-s + (1.68 + 0.416i)3-s + (−0.0295 − 0.0318i)4-s + (2.61 + 0.394i)5-s + (−1.50 + 1.96i)6-s + (−1.32 − 1.22i)7-s + (−2.63 + 0.923i)8-s + (2.65 + 1.39i)9-s + (−2.01 + 3.20i)10-s + (−0.291 + 0.250i)11-s + (−0.0364 − 0.0658i)12-s + (1.83 − 2.69i)13-s + (2.36 − 1.03i)14-s + (4.23 + 1.75i)15-s + (0.305 − 4.07i)16-s + (0.359 + 0.359i)17-s + ⋯
L(s)  = 1  + (−0.404 + 0.926i)2-s + (0.970 + 0.240i)3-s + (−0.0147 − 0.0159i)4-s + (1.16 + 0.176i)5-s + (−0.615 + 0.802i)6-s + (−0.500 − 0.464i)7-s + (−0.933 + 0.326i)8-s + (0.884 + 0.466i)9-s + (−0.635 + 1.01i)10-s + (−0.0878 + 0.0756i)11-s + (−0.0105 − 0.0190i)12-s + (0.508 − 0.746i)13-s + (0.632 − 0.275i)14-s + (1.09 + 0.452i)15-s + (0.0763 − 1.01i)16-s + (0.0871 + 0.0871i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.000120 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.000120 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(261\)    =    \(3^{2} \cdot 29\)
Sign: $-0.000120 - 0.999i$
Analytic conductor: \(2.08409\)
Root analytic conductor: \(1.44363\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{261} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 261,\ (\ :1/2),\ -0.000120 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.13799 + 1.13813i\)
\(L(\frac12)\) \(\approx\) \(1.13799 + 1.13813i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.68 - 0.416i)T \)
29 \( 1 + (-2.80 - 4.59i)T \)
good2 \( 1 + (0.571 - 1.31i)T + (-1.36 - 1.46i)T^{2} \)
5 \( 1 + (-2.61 - 0.394i)T + (4.77 + 1.47i)T^{2} \)
7 \( 1 + (1.32 + 1.22i)T + (0.523 + 6.98i)T^{2} \)
11 \( 1 + (0.291 - 0.250i)T + (1.63 - 10.8i)T^{2} \)
13 \( 1 + (-1.83 + 2.69i)T + (-4.74 - 12.1i)T^{2} \)
17 \( 1 + (-0.359 - 0.359i)T + 17iT^{2} \)
19 \( 1 + (6.57 + 4.13i)T + (8.24 + 17.1i)T^{2} \)
23 \( 1 + (-0.0597 - 0.0234i)T + (16.8 + 15.6i)T^{2} \)
31 \( 1 + (7.73 - 5.70i)T + (9.13 - 29.6i)T^{2} \)
37 \( 1 + (1.91 + 5.46i)T + (-28.9 + 23.0i)T^{2} \)
41 \( 1 + (1.60 + 0.429i)T + (35.5 + 20.5i)T^{2} \)
43 \( 1 + (-1.21 + 1.64i)T + (-12.6 - 41.0i)T^{2} \)
47 \( 1 + (0.331 + 0.385i)T + (-7.00 + 46.4i)T^{2} \)
53 \( 1 + (-1.68 - 1.34i)T + (11.7 + 51.6i)T^{2} \)
59 \( 1 + (-3.87 + 2.23i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (-9.16 + 0.342i)T + (60.8 - 4.55i)T^{2} \)
67 \( 1 + (-13.5 + 1.01i)T + (66.2 - 9.98i)T^{2} \)
71 \( 1 + (14.0 - 6.76i)T + (44.2 - 55.5i)T^{2} \)
73 \( 1 + (0.264 - 2.34i)T + (-71.1 - 16.2i)T^{2} \)
79 \( 1 + (-1.45 + 7.66i)T + (-73.5 - 28.8i)T^{2} \)
83 \( 1 + (-0.0736 + 0.238i)T + (-68.5 - 46.7i)T^{2} \)
89 \( 1 + (-8.94 + 1.00i)T + (86.7 - 19.8i)T^{2} \)
97 \( 1 + (-5.87 - 11.1i)T + (-54.6 + 80.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.69150343154975398165149336038, −10.81617554502628082766125034764, −10.10713470617680834704918597842, −9.036281946942202240560957712543, −8.491859441436434052076831944776, −7.22851130387191051823861239993, −6.54099731733275448511824853713, −5.33713889710104009326344688462, −3.54418447034826187637853425847, −2.30643741097307029312726568687, 1.70915585298720106321220332223, 2.48324544818915970388784083724, 3.87307465276385202612206610405, 5.90139968771642240680496746865, 6.60362586266134100022513795908, 8.306283714331957255174377281149, 9.172147295436924855578708583308, 9.740672422232677045331104138618, 10.52147589835624136804808317879, 11.76684588637033914799688602016

Graph of the $Z$-function along the critical line