L(s) = 1 | + (−0.400 + 0.193i)2-s + (−1.12 + 1.40i)4-s + (0.623 − 0.300i)5-s + (0.222 + 0.279i)7-s + (0.376 − 1.64i)8-s + (−0.192 + 0.240i)10-s + (1.09 + 4.81i)11-s + (1.25 + 5.51i)13-s + (−0.143 − 0.0689i)14-s + (−0.634 − 2.77i)16-s − 4.49·17-s + (−1.46 + 1.84i)19-s + (−0.277 + 1.21i)20-s + (−1.37 − 1.71i)22-s + (2.06 + 0.996i)23-s + ⋯ |
L(s) = 1 | + (−0.283 + 0.136i)2-s + (−0.561 + 0.704i)4-s + (0.278 − 0.134i)5-s + (0.0841 + 0.105i)7-s + (0.133 − 0.583i)8-s + (−0.0607 + 0.0761i)10-s + (0.331 + 1.45i)11-s + (0.348 + 1.52i)13-s + (−0.0382 − 0.0184i)14-s + (−0.158 − 0.694i)16-s − 1.08·17-s + (−0.337 + 0.422i)19-s + (−0.0620 + 0.271i)20-s + (−0.292 − 0.366i)22-s + (0.431 + 0.207i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00819 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.00819 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.657507 + 0.662916i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.657507 + 0.662916i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (-5.09 + 1.73i)T \) |
good | 2 | \( 1 + (0.400 - 0.193i)T + (1.24 - 1.56i)T^{2} \) |
| 5 | \( 1 + (-0.623 + 0.300i)T + (3.11 - 3.90i)T^{2} \) |
| 7 | \( 1 + (-0.222 - 0.279i)T + (-1.55 + 6.82i)T^{2} \) |
| 11 | \( 1 + (-1.09 - 4.81i)T + (-9.91 + 4.77i)T^{2} \) |
| 13 | \( 1 + (-1.25 - 5.51i)T + (-11.7 + 5.64i)T^{2} \) |
| 17 | \( 1 + 4.49T + 17T^{2} \) |
| 19 | \( 1 + (1.46 - 1.84i)T + (-4.22 - 18.5i)T^{2} \) |
| 23 | \( 1 + (-2.06 - 0.996i)T + (14.3 + 17.9i)T^{2} \) |
| 31 | \( 1 + (-6.02 + 2.90i)T + (19.3 - 24.2i)T^{2} \) |
| 37 | \( 1 + (-1.09 + 4.81i)T + (-33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 + 3.10T + 41T^{2} \) |
| 43 | \( 1 + (-3.06 - 1.47i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (1.43 + 6.28i)T + (-42.3 + 20.3i)T^{2} \) |
| 53 | \( 1 + (4.22 - 2.03i)T + (33.0 - 41.4i)T^{2} \) |
| 59 | \( 1 - 12.4T + 59T^{2} \) |
| 61 | \( 1 + (1.02 + 1.28i)T + (-13.5 + 59.4i)T^{2} \) |
| 67 | \( 1 + (-0.516 + 2.26i)T + (-60.3 - 29.0i)T^{2} \) |
| 71 | \( 1 + (1.63 + 7.15i)T + (-63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (5.06 + 2.44i)T + (45.5 + 57.0i)T^{2} \) |
| 79 | \( 1 + (-1.03 + 4.54i)T + (-71.1 - 34.2i)T^{2} \) |
| 83 | \( 1 + (2.77 - 3.48i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (5.11 - 2.46i)T + (55.4 - 69.5i)T^{2} \) |
| 97 | \( 1 + (0.112 - 0.141i)T + (-21.5 - 94.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.18981877077635850714168889183, −11.47670789530389594505558684090, −9.993499837227625866376478768913, −9.274396270100792389846176942888, −8.521738200710267242813604037975, −7.29510214855580443732065438614, −6.49150544084476226042676691222, −4.73636897084018060157308325560, −3.99891439602125323389929509119, −2.04117326981631198805008142054,
0.859816654778507372021084367842, 2.88057983424433482653096853261, 4.51287283519280950009099470800, 5.70918621958520558953638301112, 6.50832279272118702439949090057, 8.299982742315712771413829998790, 8.705785686045249354997605614982, 9.989528072074649949647045085402, 10.69362979507544112564446423778, 11.40616979264870596233025176810