Properties

Label 4-51e4-1.1-c0e2-0-0
Degree $4$
Conductor $6765201$
Sign $1$
Analytic cond. $1.68498$
Root an. cond. $1.13932$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 2·13-s − 16-s − 2·19-s − 2·31-s − 2·37-s + 2·43-s + 49-s + 2·61-s + 2·67-s − 4·91-s + 2·97-s − 2·103-s + 2·112-s + 2·121-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 173-s + ⋯
L(s)  = 1  − 2·7-s + 2·13-s − 16-s − 2·19-s − 2·31-s − 2·37-s + 2·43-s + 49-s + 2·61-s + 2·67-s − 4·91-s + 2·97-s − 2·103-s + 2·112-s + 2·121-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 169-s + 173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6765201 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6765201 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6765201\)    =    \(3^{4} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(1.68498\)
Root analytic conductor: \(1.13932\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6765201,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6755722881\)
\(L(\frac12)\) \(\approx\) \(0.6755722881\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2$C_2^2$ \( 1 + T^{4} \)
5$C_2^2$ \( 1 + T^{4} \)
7$C_2$ \( ( 1 + T + T^{2} )^{2} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
13$C_2$ \( ( 1 - T + T^{2} )^{2} \)
19$C_2$ \( ( 1 + T + T^{2} )^{2} \)
23$C_2^2$ \( 1 + T^{4} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_2$ \( ( 1 + T + T^{2} )^{2} \)
37$C_2$ \( ( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 - T + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_2$ \( ( 1 - T + T^{2} )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )^{2} \)
71$C_2^2$ \( 1 + T^{4} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_2$ \( ( 1 + T^{2} )^{2} \)
83$C_2^2$ \( 1 + T^{4} \)
89$C_2^2$ \( 1 + T^{4} \)
97$C_2$ \( ( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.326834246147090560417409749285, −8.823622256987809291614457058669, −8.657425953427082792199055691332, −8.301957838272685982792047386375, −7.72886470812827842660007750560, −7.11969637538421973167195938367, −6.92108683010153937643509465332, −6.50489665714416548170838749884, −6.19492924055178569594315718508, −6.07578726019765806425117292528, −5.29041936353379094595219217218, −5.19598753866712259227529533919, −4.21876732337717896777955879124, −3.91299959990558752207192893875, −3.73218600285115517355251786864, −3.29053314577641316694381223089, −2.63757267510790531800466216855, −2.13787381217851492620682795108, −1.62612481992632372434840412922, −0.52327681997133934574765767505, 0.52327681997133934574765767505, 1.62612481992632372434840412922, 2.13787381217851492620682795108, 2.63757267510790531800466216855, 3.29053314577641316694381223089, 3.73218600285115517355251786864, 3.91299959990558752207192893875, 4.21876732337717896777955879124, 5.19598753866712259227529533919, 5.29041936353379094595219217218, 6.07578726019765806425117292528, 6.19492924055178569594315718508, 6.50489665714416548170838749884, 6.92108683010153937643509465332, 7.11969637538421973167195938367, 7.72886470812827842660007750560, 8.301957838272685982792047386375, 8.657425953427082792199055691332, 8.823622256987809291614457058669, 9.326834246147090560417409749285

Graph of the $Z$-function along the critical line