Properties

Label 2-2600-65.64-c1-0-32
Degree $2$
Conductor $2600$
Sign $0.953 + 0.302i$
Analytic cond. $20.7611$
Root an. cond. $4.55643$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.56i·3-s − 4.56·7-s − 3.56·9-s − 3.12i·11-s + (0.561 + 3.56i)13-s + 0.561i·17-s − 2i·19-s − 11.6i·21-s − 5.12i·23-s − 1.43i·27-s − 3.12·29-s + 3.12i·31-s + 8·33-s − 5.43·37-s + (−9.12 + 1.43i)39-s + ⋯
L(s)  = 1  + 1.47i·3-s − 1.72·7-s − 1.18·9-s − 0.941i·11-s + (0.155 + 0.987i)13-s + 0.136i·17-s − 0.458i·19-s − 2.54i·21-s − 1.06i·23-s − 0.276i·27-s − 0.579·29-s + 0.560i·31-s + 1.39·33-s − 0.894·37-s + (−1.46 + 0.230i)39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 + 0.302i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.953 + 0.302i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2600\)    =    \(2^{3} \cdot 5^{2} \cdot 13\)
Sign: $0.953 + 0.302i$
Analytic conductor: \(20.7611\)
Root analytic conductor: \(4.55643\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2600} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2600,\ (\ :1/2),\ 0.953 + 0.302i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8046573705\)
\(L(\frac12)\) \(\approx\) \(0.8046573705\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + (-0.561 - 3.56i)T \)
good3 \( 1 - 2.56iT - 3T^{2} \)
7 \( 1 + 4.56T + 7T^{2} \)
11 \( 1 + 3.12iT - 11T^{2} \)
17 \( 1 - 0.561iT - 17T^{2} \)
19 \( 1 + 2iT - 19T^{2} \)
23 \( 1 + 5.12iT - 23T^{2} \)
29 \( 1 + 3.12T + 29T^{2} \)
31 \( 1 - 3.12iT - 31T^{2} \)
37 \( 1 + 5.43T + 37T^{2} \)
41 \( 1 + 8iT - 41T^{2} \)
43 \( 1 + 5.43iT - 43T^{2} \)
47 \( 1 - 3.43T + 47T^{2} \)
53 \( 1 - 4.24iT - 53T^{2} \)
59 \( 1 + 10iT - 59T^{2} \)
61 \( 1 - 11.1T + 61T^{2} \)
67 \( 1 - 0.876T + 67T^{2} \)
71 \( 1 + 5.68iT - 71T^{2} \)
73 \( 1 - 15.3T + 73T^{2} \)
79 \( 1 - 2.87T + 79T^{2} \)
83 \( 1 + 8.24T + 83T^{2} \)
89 \( 1 + 5.12iT - 89T^{2} \)
97 \( 1 - 10.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.035874086904718129420060510833, −8.533618833437418159120353669660, −7.08167871366954240189159589361, −6.47446162178942725914020610640, −5.68472786711422659121344350904, −4.83266648377018802074424267658, −3.73160269945257836760988190966, −3.54894811178749053830617286293, −2.42195262904634865033279362704, −0.31841013166316998929969633249, 0.951815859639121313382064301598, 2.13903797390252975914510355764, 3.03393134292721245810844775875, 3.86497537265539858807967157663, 5.32974057763998084254725424915, 6.07173253856647655474903920706, 6.67798584467323267444568373829, 7.36217819014320460134796948639, 7.85923112273994063251208173439, 8.840943948702352432265089111461

Graph of the $Z$-function along the critical line