Properties

Label 2-2600-1.1-c1-0-49
Degree $2$
Conductor $2600$
Sign $-1$
Analytic cond. $20.7611$
Root an. cond. $4.55643$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.17·3-s − 0.630·7-s − 1.63·9-s − 0.539·11-s + 13-s − 3.07·17-s + 0.879·19-s − 0.738·21-s − 2.58·23-s − 5.41·27-s − 2.29·29-s − 7.95·31-s − 0.630·33-s − 4.78·37-s + 1.17·39-s + 3.41·41-s + 3.17·43-s + 8.94·47-s − 6.60·49-s − 3.60·51-s + 0.496·53-s + 1.02·57-s − 8.29·59-s + 4.04·61-s + 1.02·63-s − 3.36·67-s − 3.02·69-s + ⋯
L(s)  = 1  + 0.675·3-s − 0.238·7-s − 0.543·9-s − 0.162·11-s + 0.277·13-s − 0.746·17-s + 0.201·19-s − 0.161·21-s − 0.539·23-s − 1.04·27-s − 0.425·29-s − 1.42·31-s − 0.109·33-s − 0.787·37-s + 0.187·39-s + 0.533·41-s + 0.483·43-s + 1.30·47-s − 0.943·49-s − 0.504·51-s + 0.0682·53-s + 0.136·57-s − 1.08·59-s + 0.518·61-s + 0.129·63-s − 0.411·67-s − 0.364·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2600\)    =    \(2^{3} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(20.7611\)
Root analytic conductor: \(4.55643\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - 1.17T + 3T^{2} \)
7 \( 1 + 0.630T + 7T^{2} \)
11 \( 1 + 0.539T + 11T^{2} \)
17 \( 1 + 3.07T + 17T^{2} \)
19 \( 1 - 0.879T + 19T^{2} \)
23 \( 1 + 2.58T + 23T^{2} \)
29 \( 1 + 2.29T + 29T^{2} \)
31 \( 1 + 7.95T + 31T^{2} \)
37 \( 1 + 4.78T + 37T^{2} \)
41 \( 1 - 3.41T + 41T^{2} \)
43 \( 1 - 3.17T + 43T^{2} \)
47 \( 1 - 8.94T + 47T^{2} \)
53 \( 1 - 0.496T + 53T^{2} \)
59 \( 1 + 8.29T + 59T^{2} \)
61 \( 1 - 4.04T + 61T^{2} \)
67 \( 1 + 3.36T + 67T^{2} \)
71 \( 1 + 9.06T + 71T^{2} \)
73 \( 1 + 12.2T + 73T^{2} \)
79 \( 1 + 5.65T + 79T^{2} \)
83 \( 1 - 1.02T + 83T^{2} \)
89 \( 1 + 16.8T + 89T^{2} \)
97 \( 1 - 5.23T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.701648119092967067837828985741, −7.73885903047633846715170375038, −7.16064906000284519192217380428, −6.08679876292915570015421552531, −5.51216170551403283654101000075, −4.35676499414583572282300717183, −3.53489843593616309985182746781, −2.70090067063046327925638638988, −1.75440020857637769243245589445, 0, 1.75440020857637769243245589445, 2.70090067063046327925638638988, 3.53489843593616309985182746781, 4.35676499414583572282300717183, 5.51216170551403283654101000075, 6.08679876292915570015421552531, 7.16064906000284519192217380428, 7.73885903047633846715170375038, 8.701648119092967067837828985741

Graph of the $Z$-function along the critical line