Properties

Label 2-26-13.6-c6-0-2
Degree $2$
Conductor $26$
Sign $-0.794 - 0.606i$
Analytic cond. $5.98140$
Root an. cond. $2.44569$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.46 + 5.46i)2-s + (6.55 − 11.3i)3-s + (−27.7 + 16i)4-s + (−97.4 + 97.4i)5-s + (71.6 + 19.2i)6-s + (−87.6 + 327. i)7-s + (−128 − 127. i)8-s + (278. + 482. i)9-s + (−675. − 389. i)10-s + (−873. + 233. i)11-s + 419. i·12-s + (−2.06e3 − 756. i)13-s − 1.91e3·14-s + (467. + 1.74e3i)15-s + (511. − 886. i)16-s + (2.11e3 − 1.21e3i)17-s + ⋯
L(s)  = 1  + (0.183 + 0.683i)2-s + (0.242 − 0.420i)3-s + (−0.433 + 0.250i)4-s + (−0.779 + 0.779i)5-s + (0.331 + 0.0888i)6-s + (−0.255 + 0.954i)7-s + (−0.250 − 0.249i)8-s + (0.382 + 0.661i)9-s + (−0.675 − 0.389i)10-s + (−0.656 + 0.175i)11-s + 0.242i·12-s + (−0.938 − 0.344i)13-s − 0.698·14-s + (0.138 + 0.517i)15-s + (0.124 − 0.216i)16-s + (0.429 − 0.248i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.794 - 0.606i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.794 - 0.606i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(26\)    =    \(2 \cdot 13\)
Sign: $-0.794 - 0.606i$
Analytic conductor: \(5.98140\)
Root analytic conductor: \(2.44569\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{26} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 26,\ (\ :3),\ -0.794 - 0.606i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.382086 + 1.13010i\)
\(L(\frac12)\) \(\approx\) \(0.382086 + 1.13010i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.46 - 5.46i)T \)
13 \( 1 + (2.06e3 + 756. i)T \)
good3 \( 1 + (-6.55 + 11.3i)T + (-364.5 - 631. i)T^{2} \)
5 \( 1 + (97.4 - 97.4i)T - 1.56e4iT^{2} \)
7 \( 1 + (87.6 - 327. i)T + (-1.01e5 - 5.88e4i)T^{2} \)
11 \( 1 + (873. - 233. i)T + (1.53e6 - 8.85e5i)T^{2} \)
17 \( 1 + (-2.11e3 + 1.21e3i)T + (1.20e7 - 2.09e7i)T^{2} \)
19 \( 1 + (-1.03e4 - 2.78e3i)T + (4.07e7 + 2.35e7i)T^{2} \)
23 \( 1 + (-2.52e3 - 1.45e3i)T + (7.40e7 + 1.28e8i)T^{2} \)
29 \( 1 + (-1.53e4 + 2.65e4i)T + (-2.97e8 - 5.15e8i)T^{2} \)
31 \( 1 + (2.83e4 - 2.83e4i)T - 8.87e8iT^{2} \)
37 \( 1 + (-8.58e3 + 2.29e3i)T + (2.22e9 - 1.28e9i)T^{2} \)
41 \( 1 + (-2.41e4 - 9.01e4i)T + (-4.11e9 + 2.37e9i)T^{2} \)
43 \( 1 + (4.21e4 - 2.43e4i)T + (3.16e9 - 5.47e9i)T^{2} \)
47 \( 1 + (9.19e4 + 9.19e4i)T + 1.07e10iT^{2} \)
53 \( 1 - 6.28e4T + 2.21e10T^{2} \)
59 \( 1 + (-2.96e4 + 1.10e5i)T + (-3.65e10 - 2.10e10i)T^{2} \)
61 \( 1 + (5.09e3 + 8.83e3i)T + (-2.57e10 + 4.46e10i)T^{2} \)
67 \( 1 + (-1.32e5 - 4.94e5i)T + (-7.83e10 + 4.52e10i)T^{2} \)
71 \( 1 + (4.36e5 + 1.16e5i)T + (1.10e11 + 6.40e10i)T^{2} \)
73 \( 1 + (-4.24e5 - 4.24e5i)T + 1.51e11iT^{2} \)
79 \( 1 - 8.14e4T + 2.43e11T^{2} \)
83 \( 1 + (3.20e5 - 3.20e5i)T - 3.26e11iT^{2} \)
89 \( 1 + (1.36e5 - 3.65e4i)T + (4.30e11 - 2.48e11i)T^{2} \)
97 \( 1 + (-1.64e6 - 4.39e5i)T + (7.21e11 + 4.16e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.26182944984284050849617794636, −15.39972584412325664406631242678, −14.36943535157164075407088172044, −12.95883663195173446222843783183, −11.76555549737460721341720591492, −9.919075165615057247916234599565, −8.008154576909949141870430492391, −7.16994912548619204544968028445, −5.25029189831059101897107275252, −2.91336550756125164976833991539, 0.65035779205494306550095001399, 3.50881982478658571142264060888, 4.81356710158111932996683388908, 7.46615022108455707167742515422, 9.186089907691400653437665995508, 10.34202436867669293780128712497, 11.89249854462833694250007790654, 12.91105925608571170925188899570, 14.29671445533748637698256604915, 15.69092968702429221975057217796

Graph of the $Z$-function along the critical line