| L(s) = 1 | + (−1.73 − i)5-s + (−1 − 1.73i)7-s + (−3.46 − 2i)13-s + 2·17-s + 4i·19-s + (−2 + 3.46i)23-s + (−0.500 − 0.866i)25-s + (−5.19 + 3i)29-s + (1 − 1.73i)31-s + 3.99i·35-s − 8i·37-s + (1 − 1.73i)41-s + (−3.46 + 2i)43-s + (6 + 10.3i)47-s + (1.50 − 2.59i)49-s + ⋯ |
| L(s) = 1 | + (−0.774 − 0.447i)5-s + (−0.377 − 0.654i)7-s + (−0.960 − 0.554i)13-s + 0.485·17-s + 0.917i·19-s + (−0.417 + 0.722i)23-s + (−0.100 − 0.173i)25-s + (−0.964 + 0.557i)29-s + (0.179 − 0.311i)31-s + 0.676i·35-s − 1.31i·37-s + (0.156 − 0.270i)41-s + (−0.528 + 0.304i)43-s + (0.875 + 1.51i)47-s + (0.214 − 0.371i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0871 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0871 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.5774011546\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5774011546\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (1.73 + i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1 + 1.73i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.46 + 2i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 - 4iT - 19T^{2} \) |
| 23 | \( 1 + (2 - 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.19 - 3i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 8iT - 37T^{2} \) |
| 41 | \( 1 + (-1 + 1.73i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.46 - 2i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6 - 10.3i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6iT - 53T^{2} \) |
| 59 | \( 1 + (-3.46 - 2i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.3 - 6i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + 6T + 73T^{2} \) |
| 79 | \( 1 + (-5 - 8.66i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (13.8 - 8i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 + (-1 - 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.123311939848167710456037462000, −8.015267715421914169161718497897, −7.69368400492607586323723351292, −6.98172913785816902647132834809, −5.84798392586787939287042441282, −5.19210627212078447818302626559, −4.06236337361926667903528598385, −3.66586321795779185318488118654, −2.42415207043780896877837754664, −0.997657884103675985263414835213,
0.22324716217930014605368567332, 2.05851746693722343004634160854, 2.92907582058478549186454464523, 3.80911129102442660839329032250, 4.74310633057863681940705611054, 5.55552616377425691833469760638, 6.58811414850821443581073648366, 7.11280203875165215396627051854, 7.926893374071571835996178755869, 8.663139198667010309046767083846