L(s) = 1 | + (−0.5 − 0.866i)5-s + (−2.44 + 4.24i)7-s + (−2.44 + 4.24i)11-s + (−1.5 − 2.59i)13-s + 5·17-s − 4.89·19-s + (−2.44 − 4.24i)23-s + (2 − 3.46i)25-s + (−2.5 + 4.33i)29-s + 4.89·35-s − 5·37-s + (1 + 1.73i)41-s + (2.44 − 4.24i)43-s + (4.89 − 8.48i)47-s + (−8.49 − 14.7i)49-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.925 + 1.60i)7-s + (−0.738 + 1.27i)11-s + (−0.416 − 0.720i)13-s + 1.21·17-s − 1.12·19-s + (−0.510 − 0.884i)23-s + (0.400 − 0.692i)25-s + (−0.464 + 0.804i)29-s + 0.828·35-s − 0.821·37-s + (0.156 + 0.270i)41-s + (0.373 − 0.646i)43-s + (0.714 − 1.23i)47-s + (−1.21 − 2.10i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4668436497\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4668436497\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (0.5 + 0.866i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (2.44 - 4.24i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.44 - 4.24i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.5 + 2.59i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 5T + 17T^{2} \) |
| 19 | \( 1 + 4.89T + 19T^{2} \) |
| 23 | \( 1 + (2.44 + 4.24i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.5 - 4.33i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 5T + 37T^{2} \) |
| 41 | \( 1 + (-1 - 1.73i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.44 + 4.24i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.89 + 8.48i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 + (-4.89 - 8.48i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.5 + 11.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.44 - 4.24i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4.89T + 71T^{2} \) |
| 73 | \( 1 - 3T + 73T^{2} \) |
| 79 | \( 1 + (-7.34 + 12.7i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.89 + 8.48i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 13T + 89T^{2} \) |
| 97 | \( 1 + (-3 + 5.19i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.663948278219009971746873540223, −8.057326933969779623724394170646, −7.14073078770360495107521177842, −6.30368969865971317400752194243, −5.43569521294470739955624883785, −4.96723940421515035031621918550, −3.77908121959890920146089578033, −2.69402587115598948954658671312, −2.10616853534755143257576921051, −0.17334210616363613287510515008,
1.02721855768322341959256142173, 2.62120343922177412206940566901, 3.62155663416698793260350889730, 3.96741155815515552995583893735, 5.25747796584549865370974928412, 6.13649653587669236916820187185, 6.85216811204924948019906319164, 7.58321376724861911629303585993, 8.085085932114656817830951653023, 9.251376817587219872978969365638