| L(s) = 1 | + (1.71 − 2.97i)3-s + (0.459 + 0.795i)5-s + (−4.39 − 7.60i)9-s + (−0.802 + 1.38i)11-s + 13-s + 3.15·15-s + (−1.36 + 2.35i)17-s + (−1.05 − 1.83i)19-s + (−2.71 − 4.70i)23-s + (2.07 − 3.59i)25-s − 19.8·27-s − 6.50·29-s + (2.83 − 4.90i)31-s + (2.75 + 4.76i)33-s + (−4.71 − 8.16i)37-s + ⋯ |
| L(s) = 1 | + (0.990 − 1.71i)3-s + (0.205 + 0.355i)5-s + (−1.46 − 2.53i)9-s + (−0.241 + 0.418i)11-s + 0.277·13-s + 0.814·15-s + (−0.330 + 0.571i)17-s + (−0.242 − 0.420i)19-s + (−0.566 − 0.981i)23-s + (0.415 − 0.719i)25-s − 3.82·27-s − 1.20·29-s + (0.509 − 0.881i)31-s + (0.479 + 0.830i)33-s + (−0.775 − 1.34i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.851379830\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.851379830\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 - T \) |
| good | 3 | \( 1 + (-1.71 + 2.97i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.459 - 0.795i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.802 - 1.38i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.36 - 2.35i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.05 + 1.83i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.71 + 4.70i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 6.50T + 29T^{2} \) |
| 31 | \( 1 + (-2.83 + 4.90i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.71 + 8.16i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.35T + 41T^{2} \) |
| 43 | \( 1 + 0.513T + 43T^{2} \) |
| 47 | \( 1 + (-2.31 - 4.01i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.81 - 4.87i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.66 + 6.35i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.303 + 0.525i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.72 + 9.91i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 15.3T + 71T^{2} \) |
| 73 | \( 1 + (5.09 - 8.81i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4.26 + 7.38i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 13.0T + 83T^{2} \) |
| 89 | \( 1 + (6.26 + 10.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 7.21T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.493908286359937397669121686378, −7.64873403016629711101940794245, −7.18186189060067870620732257861, −6.30470578874867318490149590904, −5.92433254759216094930563745905, −4.35373296869408667138709882592, −3.34239639308767275478762647485, −2.36473968577114826065690033881, −1.90171229427781406769804936287, −0.48779948226781878516914523499,
1.82020205940817116935194548616, 2.98364858458576681767738987899, 3.58416118141684586700075081828, 4.43400754846009872071625912236, 5.22187367727928112771532075269, 5.76711404683086004591544156017, 7.18924434313893226456777453268, 8.110815298754774586008835828554, 8.684732686609733270438054620889, 9.225201813319451556653362958623