| L(s) = 1 | + (0.900 + 0.433i)3-s + (−0.900 + 0.433i)4-s + (1.45 + 0.702i)7-s + (0.623 + 0.781i)9-s − 12-s + (0.385 − 0.483i)13-s + (0.623 − 0.781i)16-s + (0.556 − 0.268i)19-s + (1.00 + 1.26i)21-s + (−0.900 + 0.433i)25-s + (0.222 + 0.974i)27-s − 1.61·28-s + (−0.360 − 1.57i)31-s + (−0.900 − 0.433i)36-s + (−0.385 − 0.483i)37-s + ⋯ |
| L(s) = 1 | + (0.900 + 0.433i)3-s + (−0.900 + 0.433i)4-s + (1.45 + 0.702i)7-s + (0.623 + 0.781i)9-s − 12-s + (0.385 − 0.483i)13-s + (0.623 − 0.781i)16-s + (0.556 − 0.268i)19-s + (1.00 + 1.26i)21-s + (−0.900 + 0.433i)25-s + (0.222 + 0.974i)27-s − 1.61·28-s + (−0.360 − 1.57i)31-s + (−0.900 − 0.433i)36-s + (−0.385 − 0.483i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.505 - 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.505 - 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.622501367\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.622501367\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (-0.900 - 0.433i)T \) |
| 29 | \( 1 \) |
| good | 2 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 5 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 7 | \( 1 + (-1.45 - 0.702i)T + (0.623 + 0.781i)T^{2} \) |
| 11 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 13 | \( 1 + (-0.385 + 0.483i)T + (-0.222 - 0.974i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (-0.556 + 0.268i)T + (0.623 - 0.781i)T^{2} \) |
| 23 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 31 | \( 1 + (0.360 + 1.57i)T + (-0.900 + 0.433i)T^{2} \) |
| 37 | \( 1 + (0.385 + 0.483i)T + (-0.222 + 0.974i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + (0.360 - 1.57i)T + (-0.900 - 0.433i)T^{2} \) |
| 47 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 53 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (1.45 + 0.702i)T + (0.623 + 0.781i)T^{2} \) |
| 67 | \( 1 + (-0.385 - 0.483i)T + (-0.222 + 0.974i)T^{2} \) |
| 71 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (-0.137 + 0.602i)T + (-0.900 - 0.433i)T^{2} \) |
| 79 | \( 1 + (0.385 + 0.483i)T + (-0.222 + 0.974i)T^{2} \) |
| 83 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 89 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 97 | \( 1 + (1.45 - 0.702i)T + (0.623 - 0.781i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.282955628368280082501744523639, −8.320989204162595973518818971110, −8.000611891682724182290030324860, −7.41951431509092818453986098388, −5.81956522735286864871739641392, −5.10549972652372593353724698312, −4.43188672454354942351415512573, −3.63232903145438124951767923009, −2.67268250797174147637614521480, −1.58222723084269493121479587053,
1.21738931379680041686014310446, 1.87687120132592601505691267956, 3.42101858620527504179679209599, 4.16731774202116359722856969907, 4.86232964751820237449171831376, 5.76991897066098809406061444289, 6.90967590387871186151799681286, 7.57789303202997593532499470166, 8.429914716153723294370871298284, 8.662910380980273129675766685481