| L(s) = 1 | + (−0.623 + 0.781i)3-s + (0.623 + 0.781i)4-s + (0.385 − 0.483i)7-s + (−0.222 − 0.974i)9-s − 0.999·12-s + (0.360 − 1.57i)13-s + (−0.222 + 0.974i)16-s + (1.00 + 1.26i)19-s + (0.137 + 0.602i)21-s + (0.623 + 0.781i)25-s + (0.900 + 0.433i)27-s + 0.618·28-s + (0.556 + 0.268i)31-s + (0.623 − 0.781i)36-s + (−0.360 − 1.57i)37-s + ⋯ |
| L(s) = 1 | + (−0.623 + 0.781i)3-s + (0.623 + 0.781i)4-s + (0.385 − 0.483i)7-s + (−0.222 − 0.974i)9-s − 0.999·12-s + (0.360 − 1.57i)13-s + (−0.222 + 0.974i)16-s + (1.00 + 1.26i)19-s + (0.137 + 0.602i)21-s + (0.623 + 0.781i)25-s + (0.900 + 0.433i)27-s + 0.618·28-s + (0.556 + 0.268i)31-s + (0.623 − 0.781i)36-s + (−0.360 − 1.57i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.541 - 0.840i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.541 - 0.840i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.236227216\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.236227216\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.623 - 0.781i)T \) |
| 29 | \( 1 \) |
| good | 2 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 5 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 7 | \( 1 + (-0.385 + 0.483i)T + (-0.222 - 0.974i)T^{2} \) |
| 11 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 13 | \( 1 + (-0.360 + 1.57i)T + (-0.900 - 0.433i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (-1.00 - 1.26i)T + (-0.222 + 0.974i)T^{2} \) |
| 23 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 31 | \( 1 + (-0.556 - 0.268i)T + (0.623 + 0.781i)T^{2} \) |
| 37 | \( 1 + (0.360 + 1.57i)T + (-0.900 + 0.433i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + (-0.556 + 0.268i)T + (0.623 - 0.781i)T^{2} \) |
| 47 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 53 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (0.385 - 0.483i)T + (-0.222 - 0.974i)T^{2} \) |
| 67 | \( 1 + (-0.360 - 1.57i)T + (-0.900 + 0.433i)T^{2} \) |
| 71 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (1.45 - 0.702i)T + (0.623 - 0.781i)T^{2} \) |
| 79 | \( 1 + (0.360 + 1.57i)T + (-0.900 + 0.433i)T^{2} \) |
| 83 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 97 | \( 1 + (0.385 + 0.483i)T + (-0.222 + 0.974i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.207666066253274177481237252791, −8.385842381976723793781438147497, −7.63533128640205098894508634954, −7.05817321738763809236514701885, −5.87760551059066289943782186325, −5.49026392587385315607642269217, −4.32839255489256005902763455652, −3.55346669532149213291090627043, −2.90444615070095719423734966900, −1.23382384990329396002934630180,
1.10211455181904353001206408030, 2.00624993538313942776420144116, 2.85628133501854145740084875453, 4.59194750854515835931590440458, 5.10429296470493059416502063353, 6.06228639987318004711834698861, 6.65394948847634768803163963847, 7.13653646784660417506425888378, 8.130085008014180474764815858955, 8.979469346418507528509491267732