L(s) = 1 | + (2.63 − 1.44i)3-s − 4.01i·5-s + (1.61 − 6.81i)7-s + (4.85 − 7.58i)9-s − 5.87·11-s + (−19.5 + 11.2i)13-s + (−5.78 − 10.5i)15-s + (18.7 − 10.8i)17-s + (−3.21 − 1.85i)19-s + (−5.56 − 20.2i)21-s + 4.08·23-s + 8.87·25-s + (1.84 − 26.9i)27-s + (−2.09 + 3.62i)29-s + (22.2 + 12.8i)31-s + ⋯ |
L(s) = 1 | + (0.877 − 0.480i)3-s − 0.803i·5-s + (0.230 − 0.973i)7-s + (0.538 − 0.842i)9-s − 0.533·11-s + (−1.50 + 0.866i)13-s + (−0.385 − 0.704i)15-s + (1.10 − 0.637i)17-s + (−0.169 − 0.0977i)19-s + (−0.265 − 0.964i)21-s + 0.177·23-s + 0.354·25-s + (0.0682 − 0.997i)27-s + (−0.0721 + 0.125i)29-s + (0.718 + 0.415i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0555 + 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0555 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.35465 - 1.43217i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.35465 - 1.43217i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-2.63 + 1.44i)T \) |
| 7 | \( 1 + (-1.61 + 6.81i)T \) |
good | 5 | \( 1 + 4.01iT - 25T^{2} \) |
| 11 | \( 1 + 5.87T + 121T^{2} \) |
| 13 | \( 1 + (19.5 - 11.2i)T + (84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + (-18.7 + 10.8i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (3.21 + 1.85i)T + (180.5 + 312. i)T^{2} \) |
| 23 | \( 1 - 4.08T + 529T^{2} \) |
| 29 | \( 1 + (2.09 - 3.62i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-22.2 - 12.8i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (13.5 - 23.4i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + (-47.3 + 27.3i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-11.5 + 20.0i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-61.1 + 35.3i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-6.84 - 11.8i)T + (-1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-53.8 - 31.1i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (19.4 - 11.2i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (45.1 - 78.2i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 2.05T + 5.04e3T^{2} \) |
| 73 | \( 1 + (62.0 - 35.8i)T + (2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-56.9 - 98.6i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-132. - 76.7i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + (123. + 71.3i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-21.4 - 12.3i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.92426379787889993840502729450, −10.38564110728939427851067260710, −9.553843681097372050149529898258, −8.614612835460018368453980493183, −7.54865194630625610998563938887, −7.00132999724354603284323190995, −5.16266403763649597297577865582, −4.13367800028497430470595722497, −2.57918467581447543093489697224, −0.978341359643658102888343647722,
2.38422221263067659194560743385, 3.13858564791528093763176665295, 4.76623834799852140949471866102, 5.85182880398034668607106622332, 7.47756035751732189215016922164, 8.054584769324934185191008647236, 9.269459351445081053663167924742, 10.13025883017159384741989120295, 10.83309538837195511683234870977, 12.20537345181850053364071022025