L(s) = 1 | + (0.108 + 2.99i)3-s − 2.13i·5-s + (−6.60 − 2.32i)7-s + (−8.97 + 0.652i)9-s − 12.7·11-s + (−4.96 − 2.86i)13-s + (6.40 − 0.232i)15-s + (3.66 + 2.11i)17-s + (−3.77 + 2.17i)19-s + (6.24 − 20.0i)21-s − 27.1·23-s + 20.4·25-s + (−2.93 − 26.8i)27-s + (−14.4 − 25.0i)29-s + (−15.1 + 8.74i)31-s + ⋯ |
L(s) = 1 | + (0.0362 + 0.999i)3-s − 0.427i·5-s + (−0.943 − 0.331i)7-s + (−0.997 + 0.0725i)9-s − 1.15·11-s + (−0.382 − 0.220i)13-s + (0.427 − 0.0155i)15-s + (0.215 + 0.124i)17-s + (−0.198 + 0.114i)19-s + (0.297 − 0.954i)21-s − 1.17·23-s + 0.817·25-s + (−0.108 − 0.994i)27-s + (−0.499 − 0.865i)29-s + (−0.488 + 0.282i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.847 + 0.530i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.847 + 0.530i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.00172943 - 0.00602456i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00172943 - 0.00602456i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.108 - 2.99i)T \) |
| 7 | \( 1 + (6.60 + 2.32i)T \) |
good | 5 | \( 1 + 2.13iT - 25T^{2} \) |
| 11 | \( 1 + 12.7T + 121T^{2} \) |
| 13 | \( 1 + (4.96 + 2.86i)T + (84.5 + 146. i)T^{2} \) |
| 17 | \( 1 + (-3.66 - 2.11i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (3.77 - 2.17i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + 27.1T + 529T^{2} \) |
| 29 | \( 1 + (14.4 + 25.0i)T + (-420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (15.1 - 8.74i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (2.21 + 3.84i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + (-2.24 - 1.29i)T + (840.5 + 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-26.5 - 46.0i)T + (-924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (68.7 + 39.7i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (18.7 - 32.5i)T + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (22.5 - 12.9i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-22.6 - 13.0i)T + (1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-64.7 - 112. i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 68.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + (88.2 + 50.9i)T + (2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (2.17 - 3.77i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (38.3 - 22.1i)T + (3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + (84.0 - 48.5i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-139. + 80.6i)T + (4.70e3 - 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.24004615084839408730540758833, −10.21907300180281203875505115445, −9.769429568164434127837087706771, −8.627490602908347920377300010556, −7.63069769077182496019077703158, −6.11452620360431713539664455860, −5.12110092602623996508467741608, −3.96361107551784061667333731426, −2.74324986304408755351174514267, −0.00296749095068759067368500309,
2.22970206136903376381830946009, 3.28837594097474759621208762279, 5.28747000728067554047747544376, 6.33116449316828585012447560587, 7.20756604702899867712607945917, 8.138798084385775158947781906427, 9.283636868463086746652548526760, 10.35518830309075480525731122113, 11.35324288893702696980796005876, 12.50309941479922269794517342284