L(s) = 1 | + (0.447 + 1.34i)2-s + (−0.385 − 1.68i)3-s + (−1.59 + 1.20i)4-s + 3.94i·5-s + (2.09 − 1.27i)6-s + (−2.37 − 1.16i)7-s + (−2.32 − 1.60i)8-s + (−2.70 + 1.30i)9-s + (−5.29 + 1.76i)10-s + 4.89i·11-s + (2.64 + 2.23i)12-s + (1.13 + 0.657i)13-s + (0.506 − 3.70i)14-s + (6.66 − 1.52i)15-s + (1.11 − 3.84i)16-s + (1.67 + 0.969i)17-s + ⋯ |
L(s) = 1 | + (0.316 + 0.948i)2-s + (−0.222 − 0.974i)3-s + (−0.799 + 0.600i)4-s + 1.76i·5-s + (0.854 − 0.519i)6-s + (−0.897 − 0.441i)7-s + (−0.822 − 0.568i)8-s + (−0.900 + 0.434i)9-s + (−1.67 + 0.558i)10-s + 1.47i·11-s + (0.763 + 0.645i)12-s + (0.315 + 0.182i)13-s + (0.135 − 0.990i)14-s + (1.72 − 0.393i)15-s + (0.278 − 0.960i)16-s + (0.407 + 0.235i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.805 - 0.592i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.805 - 0.592i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.288301 + 0.878814i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.288301 + 0.878814i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.447 - 1.34i)T \) |
| 3 | \( 1 + (0.385 + 1.68i)T \) |
| 7 | \( 1 + (2.37 + 1.16i)T \) |
good | 5 | \( 1 - 3.94iT - 5T^{2} \) |
| 11 | \( 1 - 4.89iT - 11T^{2} \) |
| 13 | \( 1 + (-1.13 - 0.657i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.67 - 0.969i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.49 - 2.58i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 3.37iT - 23T^{2} \) |
| 29 | \( 1 + (1.32 + 2.30i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.443 + 0.767i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.237 - 0.410i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-8.79 - 5.07i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.31 + 1.33i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.23 - 2.13i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.34 + 10.9i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.49 - 6.05i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.05 - 1.18i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.20 - 0.697i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2.15iT - 71T^{2} \) |
| 73 | \( 1 + (-3.96 - 2.29i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (8.70 + 5.02i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.29 - 2.24i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (11.6 - 6.73i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.88 + 1.08i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.65339256664092195034539588255, −11.71284006993028952994549674534, −10.43938371469956095025839452166, −9.598360944066018056125210380700, −7.926882917193390303378637394228, −7.16533022469820733451606152981, −6.65188341544607301511380588437, −5.82059910242328164085605011865, −3.94973446282685644066522398967, −2.66155358130647912450826668641,
0.69113251824692015414990187020, 3.11425283148658291405310081227, 4.13328972195577406404073776059, 5.42188469210297703930632535481, 5.76951877326115371546012531291, 8.429498045031781981319267203139, 9.098082667196725777551606979012, 9.601681248715601618239513705506, 10.83280700526758369358165609592, 11.69982325886131243822403730924