L(s) = 1 | + (0.648 + 1.25i)2-s + (0.758 − 1.55i)3-s + (−1.15 + 1.63i)4-s + (2.66 − 1.53i)5-s + (2.44 − 0.0569i)6-s + (−1.15 + 2.37i)7-s + (−2.80 − 0.397i)8-s + (−1.84 − 2.36i)9-s + (3.66 + 2.35i)10-s + (3.64 + 2.10i)11-s + (1.66 + 3.04i)12-s + (2.97 − 1.71i)13-s + (−3.74 + 0.0882i)14-s + (−0.374 − 5.31i)15-s + (−1.31 − 3.77i)16-s − 2.29i·17-s + ⋯ |
L(s) = 1 | + (0.458 + 0.888i)2-s + (0.437 − 0.898i)3-s + (−0.579 + 0.815i)4-s + (1.19 − 0.688i)5-s + (0.999 − 0.0232i)6-s + (−0.437 + 0.899i)7-s + (−0.990 − 0.140i)8-s + (−0.616 − 0.787i)9-s + (1.15 + 0.743i)10-s + (1.10 + 0.635i)11-s + (0.479 + 0.877i)12-s + (0.824 − 0.476i)13-s + (−0.999 + 0.0235i)14-s + (−0.0966 − 1.37i)15-s + (−0.329 − 0.944i)16-s − 0.555i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.893 - 0.449i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.893 - 0.449i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.84616 + 0.438243i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.84616 + 0.438243i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.648 - 1.25i)T \) |
| 3 | \( 1 + (-0.758 + 1.55i)T \) |
| 7 | \( 1 + (1.15 - 2.37i)T \) |
good | 5 | \( 1 + (-2.66 + 1.53i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-3.64 - 2.10i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.97 + 1.71i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 2.29iT - 17T^{2} \) |
| 19 | \( 1 + 1.70T + 19T^{2} \) |
| 23 | \( 1 + (4.68 - 2.70i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.76 - 8.25i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.22 + 5.58i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2.04T + 37T^{2} \) |
| 41 | \( 1 + (4.43 - 2.56i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.89 + 1.67i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (2.20 - 3.82i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 10.5T + 53T^{2} \) |
| 59 | \( 1 + (4.44 + 7.70i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.57 + 2.06i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.53 + 5.50i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2.48iT - 71T^{2} \) |
| 73 | \( 1 - 3.46iT - 73T^{2} \) |
| 79 | \( 1 + (-8.87 - 5.12i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.0572 + 0.0991i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 3.61iT - 89T^{2} \) |
| 97 | \( 1 + (5.53 + 3.19i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.56809688669030604218070466324, −11.69070390796766813006276278847, −9.527837006823966624673443937611, −9.125114938864295972746750946990, −8.215777748192700762184073217785, −6.89625231185019151093569829415, −6.08002239452007305543102691298, −5.34190762288268794363847566926, −3.54712987329578390388916212762, −1.90010377776520608241449102353,
1.96303816776974551110984041429, 3.47357742453442903152759429527, 4.14315963758290783220345028097, 5.80257594493572426008394241817, 6.52698425039179279687428018925, 8.586472331560172249904355567387, 9.449947867764486616125190724050, 10.26013023168988774230661714361, 10.73964127577862680802279355469, 11.72934199269475874560076810720