L(s) = 1 | + (−1.13 − 0.842i)2-s + (1.59 + 0.677i)3-s + (0.581 + 1.91i)4-s + (−1.43 − 0.827i)5-s + (−1.24 − 2.11i)6-s + (−0.0302 + 2.64i)7-s + (0.950 − 2.66i)8-s + (2.08 + 2.15i)9-s + (0.931 + 2.14i)10-s + (4.24 − 2.45i)11-s + (−0.368 + 3.44i)12-s + (0.876 + 0.505i)13-s + (2.26 − 2.98i)14-s + (−1.72 − 2.28i)15-s + (−3.32 + 2.22i)16-s + 7.66i·17-s + ⋯ |
L(s) = 1 | + (−0.803 − 0.595i)2-s + (0.920 + 0.391i)3-s + (0.290 + 0.956i)4-s + (−0.640 − 0.369i)5-s + (−0.506 − 0.862i)6-s + (−0.0114 + 0.999i)7-s + (0.336 − 0.941i)8-s + (0.694 + 0.719i)9-s + (0.294 + 0.678i)10-s + (1.28 − 0.739i)11-s + (−0.106 + 0.994i)12-s + (0.243 + 0.140i)13-s + (0.604 − 0.796i)14-s + (−0.444 − 0.590i)15-s + (−0.830 + 0.556i)16-s + 1.85i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.984 - 0.177i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.984 - 0.177i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11440 + 0.0996269i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11440 + 0.0996269i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.13 + 0.842i)T \) |
| 3 | \( 1 + (-1.59 - 0.677i)T \) |
| 7 | \( 1 + (0.0302 - 2.64i)T \) |
good | 5 | \( 1 + (1.43 + 0.827i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-4.24 + 2.45i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.876 - 0.505i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 7.66iT - 17T^{2} \) |
| 19 | \( 1 - 2.85T + 19T^{2} \) |
| 23 | \( 1 + (-1.98 - 1.14i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.19 + 7.27i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.348 - 0.604i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3.97T + 37T^{2} \) |
| 41 | \( 1 + (6.69 + 3.86i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.70 + 3.87i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3.70 + 6.42i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 8.61T + 53T^{2} \) |
| 59 | \( 1 + (2.54 - 4.40i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.12 - 2.96i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.18 + 1.26i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.00iT - 71T^{2} \) |
| 73 | \( 1 + 5.89iT - 73T^{2} \) |
| 79 | \( 1 + (4.90 - 2.83i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.20 - 2.09i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 8.19iT - 89T^{2} \) |
| 97 | \( 1 + (-8.82 + 5.09i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.90465965177883323983104492340, −11.14124296545307637244301834209, −9.944874440513360164320212425793, −8.974616818508500090900440982747, −8.553138899287480889767511709518, −7.68426975041990872307014949602, −6.14277077865000502846535756291, −4.16385498181209227796423907536, −3.37043204859721118295726424332, −1.77780045336498452885415942401,
1.27641179419248959828510055389, 3.24605204700666122093799458481, 4.64937239645300082633294476265, 6.63968927975448069014990157259, 7.26044220022708919617363684120, 7.82719980455643057604434872504, 9.250815659754642281998169747138, 9.602803708148709845495916548757, 10.98467286583371351562631488651, 11.79695635931859023960800931784