Properties

Label 2-250-25.17-c2-0-14
Degree $2$
Conductor $250$
Sign $-0.977 - 0.211i$
Analytic cond. $6.81200$
Root an. cond. $2.60998$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.642 − 1.26i)2-s + (0.711 − 4.49i)3-s + (−1.17 − 1.61i)4-s + (−5.20 − 3.78i)6-s + (−3.58 − 3.58i)7-s + (−2.79 + 0.442i)8-s + (−11.1 − 3.61i)9-s + (3.53 + 10.8i)11-s + (−8.10 + 4.13i)12-s + (−10.0 − 19.7i)13-s + (−6.82 + 2.21i)14-s + (−1.23 + 3.80i)16-s + (3.10 + 19.6i)17-s + (−11.6 + 11.6i)18-s + (15.8 − 21.8i)19-s + ⋯
L(s)  = 1  + (0.321 − 0.630i)2-s + (0.237 − 1.49i)3-s + (−0.293 − 0.404i)4-s + (−0.867 − 0.630i)6-s + (−0.512 − 0.512i)7-s + (−0.349 + 0.0553i)8-s + (−1.23 − 0.401i)9-s + (0.321 + 0.989i)11-s + (−0.675 + 0.344i)12-s + (−0.773 − 1.51i)13-s + (−0.487 + 0.158i)14-s + (−0.0772 + 0.237i)16-s + (0.182 + 1.15i)17-s + (−0.649 + 0.649i)18-s + (0.833 − 1.14i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.977 - 0.211i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 250 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.977 - 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(250\)    =    \(2 \cdot 5^{3}\)
Sign: $-0.977 - 0.211i$
Analytic conductor: \(6.81200\)
Root analytic conductor: \(2.60998\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{250} (107, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 250,\ (\ :1),\ -0.977 - 0.211i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.164652 + 1.54058i\)
\(L(\frac12)\) \(\approx\) \(0.164652 + 1.54058i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.642 + 1.26i)T \)
5 \( 1 \)
good3 \( 1 + (-0.711 + 4.49i)T + (-8.55 - 2.78i)T^{2} \)
7 \( 1 + (3.58 + 3.58i)T + 49iT^{2} \)
11 \( 1 + (-3.53 - 10.8i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (10.0 + 19.7i)T + (-99.3 + 136. i)T^{2} \)
17 \( 1 + (-3.10 - 19.6i)T + (-274. + 89.3i)T^{2} \)
19 \( 1 + (-15.8 + 21.8i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (-0.476 - 0.242i)T + (310. + 427. i)T^{2} \)
29 \( 1 + (3.67 + 5.05i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (-5.42 - 3.94i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (-5.24 + 2.67i)T + (804. - 1.10e3i)T^{2} \)
41 \( 1 + (-7.33 + 22.5i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (44.7 - 44.7i)T - 1.84e3iT^{2} \)
47 \( 1 + (-27.2 - 4.31i)T + (2.10e3 + 682. i)T^{2} \)
53 \( 1 + (-13.6 + 86.0i)T + (-2.67e3 - 868. i)T^{2} \)
59 \( 1 + (-20.7 - 6.73i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (21.3 + 65.6i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (14.4 + 91.1i)T + (-4.26e3 + 1.38e3i)T^{2} \)
71 \( 1 + (-12.7 + 9.24i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (-60.4 - 30.7i)T + (3.13e3 + 4.31e3i)T^{2} \)
79 \( 1 + (-71.8 - 98.9i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (60.8 - 9.64i)T + (6.55e3 - 2.12e3i)T^{2} \)
89 \( 1 + (-75.7 + 24.6i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (-134. - 21.2i)T + (8.94e3 + 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64739415697490287618818515882, −10.40616768040272162332674971611, −9.577762683139908930649037945521, −8.153783494427580137021621790082, −7.30616085473680397175437742676, −6.42191681468337771218609241837, −5.05886477792678136910430943699, −3.38905904651428913093499252435, −2.16007160748934263692670144529, −0.71730035002644883939493364531, 2.98184883387258020853132426378, 4.01655864577211791286373548407, 5.06616259781933635432708366723, 6.05690172884541982904897677608, 7.35349200038625593707842878036, 8.804358600519040808777130785059, 9.329067346825192699732754771942, 10.12742636586663237552151492104, 11.50164173847143471518943360688, 12.13799493518163432950436960930

Graph of the $Z$-function along the critical line