Properties

Label 2-5e2-25.16-c7-0-13
Degree $2$
Conductor $25$
Sign $0.170 + 0.985i$
Analytic cond. $7.80962$
Root an. cond. $2.79457$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (6.07 + 4.41i)2-s + (2.68 + 8.24i)3-s + (−22.1 − 68.0i)4-s + (2.44 − 279. i)5-s + (−20.1 + 61.9i)6-s − 1.15e3·7-s + (463. − 1.42e3i)8-s + (1.70e3 − 1.24e3i)9-s + (1.24e3 − 1.68e3i)10-s + (348. + 253. i)11-s + (502. − 364. i)12-s + (226. − 164. i)13-s + (−7.01e3 − 5.09e3i)14-s + (2.31e3 − 728. i)15-s + (1.69e3 − 1.23e3i)16-s + (1.01e4 − 3.11e4i)17-s + ⋯
L(s)  = 1  + (0.537 + 0.390i)2-s + (0.0573 + 0.176i)3-s + (−0.172 − 0.531i)4-s + (0.00875 − 0.999i)5-s + (−0.0380 + 0.117i)6-s − 1.27·7-s + (0.319 − 0.984i)8-s + (0.781 − 0.567i)9-s + (0.394 − 0.533i)10-s + (0.0789 + 0.0573i)11-s + (0.0838 − 0.0609i)12-s + (0.0286 − 0.0208i)13-s + (−0.682 − 0.496i)14-s + (0.176 − 0.0557i)15-s + (0.103 − 0.0753i)16-s + (0.499 − 1.53i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.170 + 0.985i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.170 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25\)    =    \(5^{2}\)
Sign: $0.170 + 0.985i$
Analytic conductor: \(7.80962\)
Root analytic conductor: \(2.79457\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{25} (16, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 25,\ (\ :7/2),\ 0.170 + 0.985i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.31377 - 1.10635i\)
\(L(\frac12)\) \(\approx\) \(1.31377 - 1.10635i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-2.44 + 279. i)T \)
good2 \( 1 + (-6.07 - 4.41i)T + (39.5 + 121. i)T^{2} \)
3 \( 1 + (-2.68 - 8.24i)T + (-1.76e3 + 1.28e3i)T^{2} \)
7 \( 1 + 1.15e3T + 8.23e5T^{2} \)
11 \( 1 + (-348. - 253. i)T + (6.02e6 + 1.85e7i)T^{2} \)
13 \( 1 + (-226. + 164. i)T + (1.93e7 - 5.96e7i)T^{2} \)
17 \( 1 + (-1.01e4 + 3.11e4i)T + (-3.31e8 - 2.41e8i)T^{2} \)
19 \( 1 + (9.48e3 - 2.92e4i)T + (-7.23e8 - 5.25e8i)T^{2} \)
23 \( 1 + (-3.59e3 - 2.60e3i)T + (1.05e9 + 3.23e9i)T^{2} \)
29 \( 1 + (-3.43e4 - 1.05e5i)T + (-1.39e10 + 1.01e10i)T^{2} \)
31 \( 1 + (4.48e4 - 1.37e5i)T + (-2.22e10 - 1.61e10i)T^{2} \)
37 \( 1 + (-3.91e5 + 2.84e5i)T + (2.93e10 - 9.02e10i)T^{2} \)
41 \( 1 + (-4.19e5 + 3.05e5i)T + (6.01e10 - 1.85e11i)T^{2} \)
43 \( 1 - 1.46e5T + 2.71e11T^{2} \)
47 \( 1 + (3.61e5 + 1.11e6i)T + (-4.09e11 + 2.97e11i)T^{2} \)
53 \( 1 + (-2.76e5 - 8.50e5i)T + (-9.50e11 + 6.90e11i)T^{2} \)
59 \( 1 + (-2.09e6 + 1.52e6i)T + (7.69e11 - 2.36e12i)T^{2} \)
61 \( 1 + (-2.34e6 - 1.70e6i)T + (9.71e11 + 2.98e12i)T^{2} \)
67 \( 1 + (-1.95e5 + 6.00e5i)T + (-4.90e12 - 3.56e12i)T^{2} \)
71 \( 1 + (-1.22e6 - 3.77e6i)T + (-7.35e12 + 5.34e12i)T^{2} \)
73 \( 1 + (1.30e5 + 9.46e4i)T + (3.41e12 + 1.05e13i)T^{2} \)
79 \( 1 + (1.13e6 + 3.50e6i)T + (-1.55e13 + 1.12e13i)T^{2} \)
83 \( 1 + (9.85e5 - 3.03e6i)T + (-2.19e13 - 1.59e13i)T^{2} \)
89 \( 1 + (-5.36e6 - 3.89e6i)T + (1.36e13 + 4.20e13i)T^{2} \)
97 \( 1 + (2.38e6 + 7.32e6i)T + (-6.53e13 + 4.74e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.97186575921780253256672390624, −14.47746296938969204241991642606, −13.15701193127193847111161585038, −12.36024457657215969347376054739, −10.01484519749737815149838260535, −9.243216947893783679889127414459, −6.93652320458930159659085845537, −5.46471530125051721767274642188, −3.92446069409103553508783546472, −0.78235907385636729868394376730, 2.60000525823433525221568353080, 4.00495200538216726539207765530, 6.38679565995578285379270572842, 7.85861171600230086695416363881, 9.870607488328610283293347634763, 11.18604128753733167700053756354, 12.77171147306200407230266506639, 13.37495768931236370788348395542, 14.84886761419758692042091559156, 16.23756137840356162446753920300

Graph of the $Z$-function along the critical line