Properties

Label 2-2496-104.77-c1-0-18
Degree $2$
Conductor $2496$
Sign $-0.707 - 0.707i$
Analytic cond. $19.9306$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s − 1.41·5-s + 2.82i·7-s − 9-s + 5.09·11-s + 3.60i·13-s − 1.41i·15-s + 2·17-s − 2.82·21-s − 2.99·25-s i·27-s + 7.21i·29-s + 5.09i·33-s − 4.00i·35-s + 8.48·37-s + ⋯
L(s)  = 1  + 0.577i·3-s − 0.632·5-s + 1.06i·7-s − 0.333·9-s + 1.53·11-s + 0.999i·13-s − 0.365i·15-s + 0.485·17-s − 0.617·21-s − 0.599·25-s − 0.192i·27-s + 1.33i·29-s + 0.887i·33-s − 0.676i·35-s + 1.39·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $-0.707 - 0.707i$
Analytic conductor: \(19.9306\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2496} (2209, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :1/2),\ -0.707 - 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.437232906\)
\(L(\frac12)\) \(\approx\) \(1.437232906\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
13 \( 1 - 3.60iT \)
good5 \( 1 + 1.41T + 5T^{2} \)
7 \( 1 - 2.82iT - 7T^{2} \)
11 \( 1 - 5.09T + 11T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 7.21iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 - 8.48T + 37T^{2} \)
41 \( 1 + 5.09iT - 41T^{2} \)
43 \( 1 - 2iT - 43T^{2} \)
47 \( 1 + 7.07iT - 47T^{2} \)
53 \( 1 - 7.21iT - 53T^{2} \)
59 \( 1 - 5.09T + 59T^{2} \)
61 \( 1 - 7.21iT - 61T^{2} \)
67 \( 1 + 10.1T + 67T^{2} \)
71 \( 1 - 4.24iT - 71T^{2} \)
73 \( 1 + 10.1iT - 73T^{2} \)
79 \( 1 + 7.21T + 79T^{2} \)
83 \( 1 + 5.09T + 83T^{2} \)
89 \( 1 - 5.09iT - 89T^{2} \)
97 \( 1 - 10.1iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.031521520912237642981488679768, −8.795677813385839265024671831922, −7.73619512582706971943696397896, −6.84755861712196036303149335183, −6.08322129726751444327486207667, −5.28304524385967002021924018478, −4.23788276960488401417427765044, −3.75957731052884989160607280629, −2.64674413975614802575074856484, −1.42229602980889664904424380952, 0.53118997285082643911991208863, 1.43137462873737540768092231883, 2.90174195299476151557331431197, 3.87574561306896422944909153887, 4.37101820821259432821524366130, 5.70244320653281867973740604183, 6.41457193936221230491544604641, 7.20952603156384838982336078329, 7.83889888561318113982702628243, 8.341706859441301297011520296474

Graph of the $Z$-function along the critical line