Properties

Label 2-2496-24.11-c1-0-76
Degree $2$
Conductor $2496$
Sign $0.431 + 0.902i$
Analytic cond. $19.9306$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.31 + 1.12i)3-s + 4.10·5-s − 3.88i·7-s + (0.462 − 2.96i)9-s − 4.82i·11-s i·13-s + (−5.40 + 4.62i)15-s + 4.55i·17-s + 6.90·19-s + (4.37 + 5.11i)21-s − 3.87·23-s + 11.8·25-s + (2.73 + 4.42i)27-s − 5.07·29-s − 1.77i·31-s + ⋯
L(s)  = 1  + (−0.759 + 0.650i)3-s + 1.83·5-s − 1.46i·7-s + (0.154 − 0.988i)9-s − 1.45i·11-s − 0.277i·13-s + (−1.39 + 1.19i)15-s + 1.10i·17-s + 1.58·19-s + (0.954 + 1.11i)21-s − 0.807·23-s + 2.37·25-s + (0.525 + 0.850i)27-s − 0.941·29-s − 0.319i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.431 + 0.902i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.431 + 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $0.431 + 0.902i$
Analytic conductor: \(19.9306\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2496} (287, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :1/2),\ 0.431 + 0.902i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.876921690\)
\(L(\frac12)\) \(\approx\) \(1.876921690\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.31 - 1.12i)T \)
13 \( 1 + iT \)
good5 \( 1 - 4.10T + 5T^{2} \)
7 \( 1 + 3.88iT - 7T^{2} \)
11 \( 1 + 4.82iT - 11T^{2} \)
17 \( 1 - 4.55iT - 17T^{2} \)
19 \( 1 - 6.90T + 19T^{2} \)
23 \( 1 + 3.87T + 23T^{2} \)
29 \( 1 + 5.07T + 29T^{2} \)
31 \( 1 + 1.77iT - 31T^{2} \)
37 \( 1 + 7.22iT - 37T^{2} \)
41 \( 1 + 0.0163iT - 41T^{2} \)
43 \( 1 + 10.8T + 43T^{2} \)
47 \( 1 + 3.18T + 47T^{2} \)
53 \( 1 - 1.84T + 53T^{2} \)
59 \( 1 + 2.53iT - 59T^{2} \)
61 \( 1 + 2.09iT - 61T^{2} \)
67 \( 1 + 1.95T + 67T^{2} \)
71 \( 1 - 5.39T + 71T^{2} \)
73 \( 1 - 6.58T + 73T^{2} \)
79 \( 1 - 7.24iT - 79T^{2} \)
83 \( 1 + 10.3iT - 83T^{2} \)
89 \( 1 + 0.624iT - 89T^{2} \)
97 \( 1 + 3.61T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.057539662774859286468263434867, −8.063804150005931420867115595256, −7.00346288074576548768508354044, −6.20905410374538295077555378352, −5.70069910216098271925468050327, −5.10363844282581674555116632615, −3.88426650482572956254520773162, −3.25381148326235381802251964529, −1.66588235096906371965729787526, −0.69452082701964374911292138213, 1.50797433979681047870045741681, 2.08414058790782593281495275629, 2.86688794567370340652930303720, 4.91239083604244533599776711282, 5.22056225108098756897703054678, 5.88602220921683908423204310645, 6.65240518852541665632756943065, 7.24916903369803622135726037604, 8.321951413703869396742582173937, 9.445927262650612269729925199111

Graph of the $Z$-function along the critical line