| L(s) = 1 | + (1.62 + 0.609i)3-s − 1.44·5-s − 3.46i·7-s + (2.25 + 1.97i)9-s − 6.00i·11-s + i·13-s + (−2.33 − 0.878i)15-s + 4.92i·17-s + 1.73·19-s + (2.11 − 5.62i)21-s − 4.37·23-s − 2.92·25-s + (2.45 + 4.57i)27-s + 0.607·29-s − 8.83i·31-s + ⋯ |
| L(s) = 1 | + (0.936 + 0.351i)3-s − 0.644·5-s − 1.31i·7-s + (0.752 + 0.658i)9-s − 1.81i·11-s + 0.277i·13-s + (−0.603 − 0.226i)15-s + 1.19i·17-s + 0.398·19-s + (0.461 − 1.22i)21-s − 0.912·23-s − 0.584·25-s + (0.472 + 0.881i)27-s + 0.112·29-s − 1.58i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0975 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0975 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.731106529\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.731106529\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.62 - 0.609i)T \) |
| 13 | \( 1 - iT \) |
| good | 5 | \( 1 + 1.44T + 5T^{2} \) |
| 7 | \( 1 + 3.46iT - 7T^{2} \) |
| 11 | \( 1 + 6.00iT - 11T^{2} \) |
| 17 | \( 1 - 4.92iT - 17T^{2} \) |
| 19 | \( 1 - 1.73T + 19T^{2} \) |
| 23 | \( 1 + 4.37T + 23T^{2} \) |
| 29 | \( 1 - 0.607T + 29T^{2} \) |
| 31 | \( 1 + 8.83iT - 31T^{2} \) |
| 37 | \( 1 + 3.88iT - 37T^{2} \) |
| 41 | \( 1 + 7.61iT - 41T^{2} \) |
| 43 | \( 1 - 8.29T + 43T^{2} \) |
| 47 | \( 1 + 13.2T + 47T^{2} \) |
| 53 | \( 1 + 1.68T + 53T^{2} \) |
| 59 | \( 1 + 11.3iT - 59T^{2} \) |
| 61 | \( 1 + 6.64iT - 61T^{2} \) |
| 67 | \( 1 + 5.83T + 67T^{2} \) |
| 71 | \( 1 - 5.38T + 71T^{2} \) |
| 73 | \( 1 + 4.76T + 73T^{2} \) |
| 79 | \( 1 - 0.230iT - 79T^{2} \) |
| 83 | \( 1 - 12.0iT - 83T^{2} \) |
| 89 | \( 1 - 0.471iT - 89T^{2} \) |
| 97 | \( 1 + 12.2T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.503556250021370073286619145259, −7.997896493828002793708259049034, −7.53767859717748972624087411826, −6.47633865759679968432602577692, −5.61947010419729629158969213582, −4.26046301759087903325979349210, −3.85542487619797849437142140852, −3.26049603804026463289515415108, −1.88319127156037292281114613985, −0.49785124601112292354177849592,
1.55482542949843620438282699077, 2.49586926171629887434648610057, 3.18713890228508161776880645783, 4.36763523497119890763102095366, 5.01191222275140652523887264041, 6.16046045554114211636826170200, 7.10110336851694600204232063682, 7.61993090637446776346613375319, 8.315427981555813077008343946250, 9.104167646954506904338696121489