Properties

Label 2-2496-8.5-c1-0-4
Degree $2$
Conductor $2496$
Sign $-0.965 + 0.258i$
Analytic cond. $19.9306$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + 1.68i·5-s + 1.18·7-s − 9-s + 2.87i·11-s i·13-s − 1.68·15-s − 6.70·17-s − 1.94i·19-s + 1.18i·21-s − 4.47·23-s + 2.14·25-s i·27-s + 4.76i·29-s − 1.18·31-s + ⋯
L(s)  = 1  + 0.577i·3-s + 0.755i·5-s + 0.447·7-s − 0.333·9-s + 0.866i·11-s − 0.277i·13-s − 0.435·15-s − 1.62·17-s − 0.446i·19-s + 0.258i·21-s − 0.932·23-s + 0.429·25-s − 0.192i·27-s + 0.884i·29-s − 0.212·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.965 + 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $-0.965 + 0.258i$
Analytic conductor: \(19.9306\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2496} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :1/2),\ -0.965 + 0.258i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6884524084\)
\(L(\frac12)\) \(\approx\) \(0.6884524084\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
13 \( 1 + iT \)
good5 \( 1 - 1.68iT - 5T^{2} \)
7 \( 1 - 1.18T + 7T^{2} \)
11 \( 1 - 2.87iT - 11T^{2} \)
17 \( 1 + 6.70T + 17T^{2} \)
19 \( 1 + 1.94iT - 19T^{2} \)
23 \( 1 + 4.47T + 23T^{2} \)
29 \( 1 - 4.76iT - 29T^{2} \)
31 \( 1 + 1.18T + 31T^{2} \)
37 \( 1 - 4.47iT - 37T^{2} \)
41 \( 1 + 6.47T + 41T^{2} \)
43 \( 1 + 2.70iT - 43T^{2} \)
47 \( 1 + 7.34T + 47T^{2} \)
53 \( 1 - 2.19iT - 53T^{2} \)
59 \( 1 + 6.97iT - 59T^{2} \)
61 \( 1 - 11.5iT - 61T^{2} \)
67 \( 1 + 7.34iT - 67T^{2} \)
71 \( 1 - 10.8T + 71T^{2} \)
73 \( 1 - 2T + 73T^{2} \)
79 \( 1 - 12.4T + 79T^{2} \)
83 \( 1 + 2.87iT - 83T^{2} \)
89 \( 1 + 6.37T + 89T^{2} \)
97 \( 1 + 15.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.385234730774713739623137188513, −8.605257292903054580970772808840, −7.86814664616708291869051923406, −6.84673586884844158254485782575, −6.49548115955382167370665473149, −5.19079943729021131355975525999, −4.65657604022874657877072660640, −3.72746236465200223990534722059, −2.73250394867684534260541489640, −1.81728113979895670692453720126, 0.21547945878413641756044227389, 1.51176543417497264095849854732, 2.39258760990834569538479437182, 3.69323164317026980484767568850, 4.57307430928973548089611835546, 5.37691021148507308430224739419, 6.26612366661356420304185198588, 6.86737318622868848416025916529, 8.064706160163851052353042636519, 8.314593365574250322608833602737

Graph of the $Z$-function along the critical line