Properties

Label 12-2496e6-1.1-c1e6-0-1
Degree $12$
Conductor $2.418\times 10^{20}$
Sign $1$
Analytic cond. $6.26801\times 10^{7}$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s + 21·9-s − 2·13-s + 12·17-s + 8·23-s + 10·25-s + 56·27-s − 4·29-s − 12·39-s + 24·43-s + 18·49-s + 72·51-s + 12·53-s − 12·61-s + 48·69-s + 60·75-s − 8·79-s + 126·81-s − 24·87-s − 4·101-s + 8·103-s + 16·107-s + 28·113-s − 42·117-s + 46·121-s + 127-s + 144·129-s + ⋯
L(s)  = 1  + 3.46·3-s + 7·9-s − 0.554·13-s + 2.91·17-s + 1.66·23-s + 2·25-s + 10.7·27-s − 0.742·29-s − 1.92·39-s + 3.65·43-s + 18/7·49-s + 10.0·51-s + 1.64·53-s − 1.53·61-s + 5.77·69-s + 6.92·75-s − 0.900·79-s + 14·81-s − 2.57·87-s − 0.398·101-s + 0.788·103-s + 1.54·107-s + 2.63·113-s − 3.88·117-s + 4.18·121-s + 0.0887·127-s + 12.6·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{36} \cdot 3^{6} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{36} \cdot 3^{6} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(6.26801\times 10^{7}\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 2^{36} \cdot 3^{6} \cdot 13^{6} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(92.78031724\)
\(L(\frac12)\) \(\approx\) \(92.78031724\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( ( 1 - T )^{6} \)
13 \( 1 + 2 T + 3 T^{2} + 44 T^{3} + 3 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
good5 \( 1 - 2 p T^{2} + 71 T^{4} - 396 T^{6} + 71 p^{2} T^{8} - 2 p^{5} T^{10} + p^{6} T^{12} \)
7 \( 1 - 18 T^{2} + 143 T^{4} - 860 T^{6} + 143 p^{2} T^{8} - 18 p^{4} T^{10} + p^{6} T^{12} \)
11 \( 1 - 46 T^{2} + 1031 T^{4} - 14148 T^{6} + 1031 p^{2} T^{8} - 46 p^{4} T^{10} + p^{6} T^{12} \)
17 \( ( 1 - 2 T + p T^{2} )^{6} \)
19 \( 1 - 90 T^{2} + 3671 T^{4} - 88172 T^{6} + 3671 p^{2} T^{8} - 90 p^{4} T^{10} + p^{6} T^{12} \)
23 \( ( 1 - 4 T + 37 T^{2} - 120 T^{3} + 37 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
29 \( ( 1 + 2 T + 51 T^{2} + 108 T^{3} + 51 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
31 \( 1 - 130 T^{2} + 8255 T^{4} - 318396 T^{6} + 8255 p^{2} T^{8} - 130 p^{4} T^{10} + p^{6} T^{12} \)
37 \( 1 - 62 T^{2} + 1207 T^{4} - 16772 T^{6} + 1207 p^{2} T^{8} - 62 p^{4} T^{10} + p^{6} T^{12} \)
41 \( 1 - 66 T^{2} + 3471 T^{4} - 153916 T^{6} + 3471 p^{2} T^{8} - 66 p^{4} T^{10} + p^{6} T^{12} \)
43 \( ( 1 - 12 T + 65 T^{2} - 200 T^{3} + 65 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
47 \( 1 - 198 T^{2} + 18911 T^{4} - 1107380 T^{6} + 18911 p^{2} T^{8} - 198 p^{4} T^{10} + p^{6} T^{12} \)
53 \( ( 1 - 6 T + 59 T^{2} - 868 T^{3} + 59 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
59 \( 1 - 286 T^{2} + 36327 T^{4} - 2706148 T^{6} + 36327 p^{2} T^{8} - 286 p^{4} T^{10} + p^{6} T^{12} \)
61 \( ( 1 + 6 T + 83 T^{2} + 68 T^{3} + 83 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 - 186 T^{2} + 20855 T^{4} - 1607852 T^{6} + 20855 p^{2} T^{8} - 186 p^{4} T^{10} + p^{6} T^{12} \)
71 \( 1 - 294 T^{2} + 41807 T^{4} - 3677492 T^{6} + 41807 p^{2} T^{8} - 294 p^{4} T^{10} + p^{6} T^{12} \)
73 \( 1 - 358 T^{2} + 58111 T^{4} - 5442580 T^{6} + 58111 p^{2} T^{8} - 358 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 + 4 T + 93 T^{2} + 568 T^{3} + 93 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 - 142 T^{2} + 16151 T^{4} - 1857348 T^{6} + 16151 p^{2} T^{8} - 142 p^{4} T^{10} + p^{6} T^{12} \)
89 \( 1 - 258 T^{2} + 30383 T^{4} - 2720060 T^{6} + 30383 p^{2} T^{8} - 258 p^{4} T^{10} + p^{6} T^{12} \)
97 \( 1 - 246 T^{2} + 35855 T^{4} - 3951284 T^{6} + 35855 p^{2} T^{8} - 246 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.54845351998761729990946847551, −4.31106905806513883840906410046, −4.22588643455383943050449842111, −4.15841631404298467756505381283, −3.96828223118110715427223692489, −3.90320669195303117504487994225, −3.58810330037055471259621394442, −3.43048130921961927126193057590, −3.36115776311611781855105010544, −3.15058784392505704625097638299, −3.01450841032220825087409868559, −2.97992994824898945449456947619, −2.95640394671098401907765118097, −2.60061862831530055935738289703, −2.51934451169219714609919823854, −2.27890810016696806848336557699, −2.11921754865425606766690288060, −1.95178036801997504904506563801, −1.91428769299826708713109071041, −1.51309434816253562202936834229, −1.25110313048238510998183428576, −0.968963723357926901051500389662, −0.956931438572964116759927026293, −0.815546196876631672865236839037, −0.54709752118419103150928856074, 0.54709752118419103150928856074, 0.815546196876631672865236839037, 0.956931438572964116759927026293, 0.968963723357926901051500389662, 1.25110313048238510998183428576, 1.51309434816253562202936834229, 1.91428769299826708713109071041, 1.95178036801997504904506563801, 2.11921754865425606766690288060, 2.27890810016696806848336557699, 2.51934451169219714609919823854, 2.60061862831530055935738289703, 2.95640394671098401907765118097, 2.97992994824898945449456947619, 3.01450841032220825087409868559, 3.15058784392505704625097638299, 3.36115776311611781855105010544, 3.43048130921961927126193057590, 3.58810330037055471259621394442, 3.90320669195303117504487994225, 3.96828223118110715427223692489, 4.15841631404298467756505381283, 4.22588643455383943050449842111, 4.31106905806513883840906410046, 4.54845351998761729990946847551

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.