Properties

Label 2-2496-13.12-c1-0-9
Degree $2$
Conductor $2496$
Sign $0.722 - 0.691i$
Analytic cond. $19.9306$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3.60i·5-s + 4.49i·7-s + 9-s + 0.890i·11-s + (2.60 − 2.49i)13-s + 3.60i·15-s + 2·17-s + 4.49i·19-s − 4.49i·21-s − 1.78·23-s − 7.98·25-s − 27-s − 0.219·29-s − 2.71i·31-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.61i·5-s + 1.69i·7-s + 0.333·9-s + 0.268i·11-s + (0.722 − 0.691i)13-s + 0.930i·15-s + 0.485·17-s + 1.03i·19-s − 0.980i·21-s − 0.371·23-s − 1.59·25-s − 0.192·27-s − 0.0408·29-s − 0.487i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.722 - 0.691i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.722 - 0.691i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $0.722 - 0.691i$
Analytic conductor: \(19.9306\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2496} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :1/2),\ 0.722 - 0.691i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.279524100\)
\(L(\frac12)\) \(\approx\) \(1.279524100\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + (-2.60 + 2.49i)T \)
good5 \( 1 + 3.60iT - 5T^{2} \)
7 \( 1 - 4.49iT - 7T^{2} \)
11 \( 1 - 0.890iT - 11T^{2} \)
17 \( 1 - 2T + 17T^{2} \)
19 \( 1 - 4.49iT - 19T^{2} \)
23 \( 1 + 1.78T + 23T^{2} \)
29 \( 1 + 0.219T + 29T^{2} \)
31 \( 1 + 2.71iT - 31T^{2} \)
37 \( 1 - 5.78iT - 37T^{2} \)
41 \( 1 - 10.8iT - 41T^{2} \)
43 \( 1 + 10.7T + 43T^{2} \)
47 \( 1 + 4.89iT - 47T^{2} \)
53 \( 1 - 14.1T + 53T^{2} \)
59 \( 1 - 8.09iT - 59T^{2} \)
61 \( 1 + 7.42T + 61T^{2} \)
67 \( 1 - 3.70iT - 67T^{2} \)
71 \( 1 - 5.87iT - 71T^{2} \)
73 \( 1 - 7.20iT - 73T^{2} \)
79 \( 1 - 13.9T + 79T^{2} \)
83 \( 1 + 14.3iT - 83T^{2} \)
89 \( 1 - 6.37iT - 89T^{2} \)
97 \( 1 - 15.2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.828993534945294134644759580738, −8.408923135369414608987162382036, −7.78722843890406969286670813613, −6.34255281451909339136965547653, −5.71443813622671727432580927201, −5.27497514384279894967404693215, −4.48941601856781678929170349976, −3.35673433112698225005701209291, −2.00862137987480983162260226146, −1.06817019014780277360221348997, 0.54500599820861029122532750725, 1.95254937073091527432516692398, 3.34508622666075405268819445812, 3.80512638279661869634575080903, 4.79236353701968887315446955638, 5.98036640026000636855957303971, 6.67882266022690680148673381303, 7.13548077955020226665927771924, 7.69558581872808070283303362058, 8.868767825010705977761824696457

Graph of the $Z$-function along the critical line