L(s) = 1 | − 3-s − 3.60i·5-s + 4.49i·7-s + 9-s + 0.890i·11-s + (2.60 − 2.49i)13-s + 3.60i·15-s + 2·17-s + 4.49i·19-s − 4.49i·21-s − 1.78·23-s − 7.98·25-s − 27-s − 0.219·29-s − 2.71i·31-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.61i·5-s + 1.69i·7-s + 0.333·9-s + 0.268i·11-s + (0.722 − 0.691i)13-s + 0.930i·15-s + 0.485·17-s + 1.03i·19-s − 0.980i·21-s − 0.371·23-s − 1.59·25-s − 0.192·27-s − 0.0408·29-s − 0.487i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.722 - 0.691i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.722 - 0.691i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.279524100\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.279524100\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 13 | \( 1 + (-2.60 + 2.49i)T \) |
good | 5 | \( 1 + 3.60iT - 5T^{2} \) |
| 7 | \( 1 - 4.49iT - 7T^{2} \) |
| 11 | \( 1 - 0.890iT - 11T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 - 4.49iT - 19T^{2} \) |
| 23 | \( 1 + 1.78T + 23T^{2} \) |
| 29 | \( 1 + 0.219T + 29T^{2} \) |
| 31 | \( 1 + 2.71iT - 31T^{2} \) |
| 37 | \( 1 - 5.78iT - 37T^{2} \) |
| 41 | \( 1 - 10.8iT - 41T^{2} \) |
| 43 | \( 1 + 10.7T + 43T^{2} \) |
| 47 | \( 1 + 4.89iT - 47T^{2} \) |
| 53 | \( 1 - 14.1T + 53T^{2} \) |
| 59 | \( 1 - 8.09iT - 59T^{2} \) |
| 61 | \( 1 + 7.42T + 61T^{2} \) |
| 67 | \( 1 - 3.70iT - 67T^{2} \) |
| 71 | \( 1 - 5.87iT - 71T^{2} \) |
| 73 | \( 1 - 7.20iT - 73T^{2} \) |
| 79 | \( 1 - 13.9T + 79T^{2} \) |
| 83 | \( 1 + 14.3iT - 83T^{2} \) |
| 89 | \( 1 - 6.37iT - 89T^{2} \) |
| 97 | \( 1 - 15.2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.828993534945294134644759580738, −8.408923135369414608987162382036, −7.78722843890406969286670813613, −6.34255281451909339136965547653, −5.71443813622671727432580927201, −5.27497514384279894967404693215, −4.48941601856781678929170349976, −3.35673433112698225005701209291, −2.00862137987480983162260226146, −1.06817019014780277360221348997,
0.54500599820861029122532750725, 1.95254937073091527432516692398, 3.34508622666075405268819445812, 3.80512638279661869634575080903, 4.79236353701968887315446955638, 5.98036640026000636855957303971, 6.67882266022690680148673381303, 7.13548077955020226665927771924, 7.69558581872808070283303362058, 8.868767825010705977761824696457