Properties

Label 2-2496-13.12-c1-0-54
Degree $2$
Conductor $2496$
Sign $-0.832 - 0.554i$
Analytic cond. $19.9306$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4i·5-s − 2i·7-s + 9-s − 2i·11-s + (−3 − 2i)13-s + 4i·15-s − 6·17-s − 2i·19-s + 2i·21-s + 8·23-s − 11·25-s − 27-s − 6·29-s − 10i·31-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78i·5-s − 0.755i·7-s + 0.333·9-s − 0.603i·11-s + (−0.832 − 0.554i)13-s + 1.03i·15-s − 1.45·17-s − 0.458i·19-s + 0.436i·21-s + 1.66·23-s − 2.20·25-s − 0.192·27-s − 1.11·29-s − 1.79i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.832 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $-0.832 - 0.554i$
Analytic conductor: \(19.9306\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2496} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :1/2),\ -0.832 - 0.554i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7797835954\)
\(L(\frac12)\) \(\approx\) \(0.7797835954\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 + (3 + 2i)T \)
good5 \( 1 + 4iT - 5T^{2} \)
7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 + 2iT - 11T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 + 2iT - 19T^{2} \)
23 \( 1 - 8T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + 10iT - 31T^{2} \)
37 \( 1 - 4iT - 37T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 2iT - 47T^{2} \)
53 \( 1 - 10T + 53T^{2} \)
59 \( 1 - 14iT - 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 + 2iT - 67T^{2} \)
71 \( 1 - 6iT - 71T^{2} \)
73 \( 1 + 8iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 6iT - 83T^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.649102594500515562342702447315, −7.65050476722099170218013605452, −7.04766700526527336053534336504, −5.91509934996935650689321755728, −5.24115070357152327931453580061, −4.56581713823164164053018756248, −3.95039842533046480741083629369, −2.41499891062322331168573727567, −1.03603562996666418277480088409, −0.31966947271125113613729335349, 1.98147274487239848904423483903, 2.62640295538608000878032812571, 3.65988317916029700707079890199, 4.72524061982734275790183561088, 5.55676552435834742565901160497, 6.50113669118761307461248035513, 7.00768809896649611309691116990, 7.42529433920466708307214577013, 8.766921861596550770230391365524, 9.430186903857130543204243077918

Graph of the $Z$-function along the critical line