| L(s) = 1 | + (0.866 + 0.5i)3-s − 1.73i·5-s − i·7-s + (0.499 + 0.866i)9-s − 13-s + (0.866 − 1.49i)15-s − 1.73i·17-s + (0.5 − 0.866i)21-s − 1.99·25-s + 0.999i·27-s + 2i·31-s − 1.73·35-s − 37-s + (−0.866 − 0.5i)39-s − i·43-s + ⋯ |
| L(s) = 1 | + (0.866 + 0.5i)3-s − 1.73i·5-s − i·7-s + (0.499 + 0.866i)9-s − 13-s + (0.866 − 1.49i)15-s − 1.73i·17-s + (0.5 − 0.866i)21-s − 1.99·25-s + 0.999i·27-s + 2i·31-s − 1.73·35-s − 37-s + (−0.866 − 0.5i)39-s − i·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.258 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.495194240\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.495194240\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + T \) |
| good | 5 | \( 1 + 1.73iT - T^{2} \) |
| 7 | \( 1 + iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 17 | \( 1 + 1.73iT - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - 2iT - T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 - 1.73T + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - 1.73T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.925658111687465769317672096444, −8.418522654552514420257016930099, −7.40746379880658791956358306233, −7.09067431879173514676389608585, −5.32507478036261321330825551037, −4.92999958330322468280042980552, −4.26984671804894284111664767851, −3.34025781057296799867394903593, −2.14504466341566549480543018648, −0.892859957732629440490244545981,
2.05069323618113212242325656682, 2.46656753181396512134880143518, 3.36800298639933367475709975533, 4.17150696606773043674063541544, 5.72699816207724817138936451661, 6.27555537988749312756711033825, 7.05236921534460662134368459184, 7.71797687284700530203178504871, 8.350359779199986946535701074361, 9.285249648750112101353825405682