Properties

Label 2-2475-1.1-c3-0-53
Degree $2$
Conductor $2475$
Sign $1$
Analytic cond. $146.029$
Root an. cond. $12.0842$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.245·2-s − 7.93·4-s + 10.5·7-s − 3.91·8-s − 11·11-s − 63.0·13-s + 2.58·14-s + 62.5·16-s + 133.·17-s + 76.1·19-s − 2.70·22-s − 169.·23-s − 15.4·26-s − 83.3·28-s − 202.·29-s + 191.·31-s + 46.7·32-s + 32.9·34-s + 21.5·37-s + 18.7·38-s − 305.·41-s + 285.·43-s + 87.3·44-s − 41.7·46-s − 123.·47-s − 232.·49-s + 500.·52-s + ⋯
L(s)  = 1  + 0.0869·2-s − 0.992·4-s + 0.567·7-s − 0.173·8-s − 0.301·11-s − 1.34·13-s + 0.0492·14-s + 0.977·16-s + 1.91·17-s + 0.919·19-s − 0.0262·22-s − 1.53·23-s − 0.116·26-s − 0.562·28-s − 1.29·29-s + 1.11·31-s + 0.258·32-s + 0.166·34-s + 0.0959·37-s + 0.0799·38-s − 1.16·41-s + 1.01·43-s + 0.299·44-s − 0.133·46-s − 0.384·47-s − 0.678·49-s + 1.33·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2475 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2475\)    =    \(3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(146.029\)
Root analytic conductor: \(12.0842\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2475,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.454582222\)
\(L(\frac12)\) \(\approx\) \(1.454582222\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
11 \( 1 + 11T \)
good2 \( 1 - 0.245T + 8T^{2} \)
7 \( 1 - 10.5T + 343T^{2} \)
13 \( 1 + 63.0T + 2.19e3T^{2} \)
17 \( 1 - 133.T + 4.91e3T^{2} \)
19 \( 1 - 76.1T + 6.85e3T^{2} \)
23 \( 1 + 169.T + 1.21e4T^{2} \)
29 \( 1 + 202.T + 2.43e4T^{2} \)
31 \( 1 - 191.T + 2.97e4T^{2} \)
37 \( 1 - 21.5T + 5.06e4T^{2} \)
41 \( 1 + 305.T + 6.89e4T^{2} \)
43 \( 1 - 285.T + 7.95e4T^{2} \)
47 \( 1 + 123.T + 1.03e5T^{2} \)
53 \( 1 - 480.T + 1.48e5T^{2} \)
59 \( 1 + 364.T + 2.05e5T^{2} \)
61 \( 1 - 9.11T + 2.26e5T^{2} \)
67 \( 1 + 568.T + 3.00e5T^{2} \)
71 \( 1 - 157.T + 3.57e5T^{2} \)
73 \( 1 + 212.T + 3.89e5T^{2} \)
79 \( 1 - 792.T + 4.93e5T^{2} \)
83 \( 1 + 587.T + 5.71e5T^{2} \)
89 \( 1 + 698.T + 7.04e5T^{2} \)
97 \( 1 - 1.83e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.462585061199200945100749530910, −7.76817611819846356661867632284, −7.43225109707965461356240145780, −5.95849769433227488559561754232, −5.34288398877078349785668964196, −4.73677334854223854543104429276, −3.80051880879109879661376909897, −2.93212508217415879556031542837, −1.66673000011808765660518360403, −0.53951177719964469512361154629, 0.53951177719964469512361154629, 1.66673000011808765660518360403, 2.93212508217415879556031542837, 3.80051880879109879661376909897, 4.73677334854223854543104429276, 5.34288398877078349785668964196, 5.95849769433227488559561754232, 7.43225109707965461356240145780, 7.76817611819846356661867632284, 8.462585061199200945100749530910

Graph of the $Z$-function along the critical line