Properties

Label 2-2450-1.1-c3-0-51
Degree $2$
Conductor $2450$
Sign $1$
Analytic cond. $144.554$
Root an. cond. $12.0230$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 0.535·3-s + 4·4-s + 1.07·6-s + 8·8-s − 26.7·9-s + 57.6·11-s + 2.14·12-s − 88.9·13-s + 16·16-s − 13.2·17-s − 53.4·18-s − 115.·19-s + 115.·22-s − 192.·23-s + 4.28·24-s − 177.·26-s − 28.7·27-s + 247.·29-s + 229.·31-s + 32·32-s + 30.8·33-s − 26.5·34-s − 106.·36-s + 238.·37-s − 231.·38-s − 47.6·39-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.103·3-s + 0.5·4-s + 0.0728·6-s + 0.353·8-s − 0.989·9-s + 1.57·11-s + 0.0515·12-s − 1.89·13-s + 0.250·16-s − 0.189·17-s − 0.699·18-s − 1.39·19-s + 1.11·22-s − 1.74·23-s + 0.0364·24-s − 1.34·26-s − 0.205·27-s + 1.58·29-s + 1.32·31-s + 0.176·32-s + 0.162·33-s − 0.133·34-s − 0.494·36-s + 1.05·37-s − 0.986·38-s − 0.195·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2450\)    =    \(2 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(144.554\)
Root analytic conductor: \(12.0230\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2450,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.053536430\)
\(L(\frac12)\) \(\approx\) \(3.053536430\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 - 0.535T + 27T^{2} \)
11 \( 1 - 57.6T + 1.33e3T^{2} \)
13 \( 1 + 88.9T + 2.19e3T^{2} \)
17 \( 1 + 13.2T + 4.91e3T^{2} \)
19 \( 1 + 115.T + 6.85e3T^{2} \)
23 \( 1 + 192.T + 1.21e4T^{2} \)
29 \( 1 - 247.T + 2.43e4T^{2} \)
31 \( 1 - 229.T + 2.97e4T^{2} \)
37 \( 1 - 238.T + 5.06e4T^{2} \)
41 \( 1 - 213.T + 6.89e4T^{2} \)
43 \( 1 - 142.T + 7.95e4T^{2} \)
47 \( 1 - 88.5T + 1.03e5T^{2} \)
53 \( 1 + 1.10T + 1.48e5T^{2} \)
59 \( 1 - 639.T + 2.05e5T^{2} \)
61 \( 1 - 76.8T + 2.26e5T^{2} \)
67 \( 1 - 549.T + 3.00e5T^{2} \)
71 \( 1 - 836.T + 3.57e5T^{2} \)
73 \( 1 - 956.T + 3.89e5T^{2} \)
79 \( 1 + 719.T + 4.93e5T^{2} \)
83 \( 1 - 921.T + 5.71e5T^{2} \)
89 \( 1 - 296.T + 7.04e5T^{2} \)
97 \( 1 + 1.54e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.423803174962269227045444546833, −7.907113546581161258095115452895, −6.66252255560916307139920147944, −6.41964988230723109916672458703, −5.43588358553991407686770786851, −4.43274298587837736550479099515, −3.99658554149908365732083932679, −2.65816440662302952737385636696, −2.20064216305885774138799728636, −0.66106859750675155923249141670, 0.66106859750675155923249141670, 2.20064216305885774138799728636, 2.65816440662302952737385636696, 3.99658554149908365732083932679, 4.43274298587837736550479099515, 5.43588358553991407686770786851, 6.41964988230723109916672458703, 6.66252255560916307139920147944, 7.907113546581161258095115452895, 8.423803174962269227045444546833

Graph of the $Z$-function along the critical line