Properties

Label 2-2450-1.1-c3-0-4
Degree $2$
Conductor $2450$
Sign $1$
Analytic cond. $144.554$
Root an. cond. $12.0230$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 1.20·3-s + 4·4-s + 2.40·6-s − 8·8-s − 25.5·9-s − 26.4·11-s − 4.80·12-s − 55.0·13-s + 16·16-s − 49.4·17-s + 51.1·18-s − 5.46·19-s + 52.8·22-s + 1.07·23-s + 9.60·24-s + 110.·26-s + 63.0·27-s − 246.·29-s − 228.·31-s − 32·32-s + 31.7·33-s + 98.8·34-s − 102.·36-s − 381.·37-s + 10.9·38-s + 66.0·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.230·3-s + 0.5·4-s + 0.163·6-s − 0.353·8-s − 0.946·9-s − 0.724·11-s − 0.115·12-s − 1.17·13-s + 0.250·16-s − 0.705·17-s + 0.669·18-s − 0.0659·19-s + 0.512·22-s + 0.00972·23-s + 0.0816·24-s + 0.830·26-s + 0.449·27-s − 1.57·29-s − 1.32·31-s − 0.176·32-s + 0.167·33-s + 0.498·34-s − 0.473·36-s − 1.69·37-s + 0.0466·38-s + 0.271·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2450\)    =    \(2 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(144.554\)
Root analytic conductor: \(12.0230\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2450,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1024290265\)
\(L(\frac12)\) \(\approx\) \(0.1024290265\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 + 1.20T + 27T^{2} \)
11 \( 1 + 26.4T + 1.33e3T^{2} \)
13 \( 1 + 55.0T + 2.19e3T^{2} \)
17 \( 1 + 49.4T + 4.91e3T^{2} \)
19 \( 1 + 5.46T + 6.85e3T^{2} \)
23 \( 1 - 1.07T + 1.21e4T^{2} \)
29 \( 1 + 246.T + 2.43e4T^{2} \)
31 \( 1 + 228.T + 2.97e4T^{2} \)
37 \( 1 + 381.T + 5.06e4T^{2} \)
41 \( 1 - 48.5T + 6.89e4T^{2} \)
43 \( 1 - 233.T + 7.95e4T^{2} \)
47 \( 1 + 245.T + 1.03e5T^{2} \)
53 \( 1 - 269.T + 1.48e5T^{2} \)
59 \( 1 + 784.T + 2.05e5T^{2} \)
61 \( 1 + 425.T + 2.26e5T^{2} \)
67 \( 1 + 918.T + 3.00e5T^{2} \)
71 \( 1 - 200.T + 3.57e5T^{2} \)
73 \( 1 - 778.T + 3.89e5T^{2} \)
79 \( 1 - 189.T + 4.93e5T^{2} \)
83 \( 1 + 611.T + 5.71e5T^{2} \)
89 \( 1 + 292.T + 7.04e5T^{2} \)
97 \( 1 - 1.42e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.798984272190429633499930517528, −7.68533170619529012989195755386, −7.35293320149277509870245209892, −6.31330559650646712409316896106, −5.50951006470474822831430069590, −4.85442783535994326113390501513, −3.54206651933313801797867879338, −2.58389977868574880594252380300, −1.80295437021985133133198777647, −0.14894607776031489325557461598, 0.14894607776031489325557461598, 1.80295437021985133133198777647, 2.58389977868574880594252380300, 3.54206651933313801797867879338, 4.85442783535994326113390501513, 5.50951006470474822831430069590, 6.31330559650646712409316896106, 7.35293320149277509870245209892, 7.68533170619529012989195755386, 8.798984272190429633499930517528

Graph of the $Z$-function along the critical line