Properties

Label 2-2450-1.1-c3-0-50
Degree $2$
Conductor $2450$
Sign $1$
Analytic cond. $144.554$
Root an. cond. $12.0230$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4.41·3-s + 4·4-s − 8.83·6-s − 8·8-s − 7.50·9-s − 37.0·11-s + 17.6·12-s + 47.2·13-s + 16·16-s + 37.7·17-s + 15.0·18-s − 7.60·19-s + 74.1·22-s + 148.·23-s − 35.3·24-s − 94.5·26-s − 152.·27-s − 84.5·29-s + 129.·31-s − 32·32-s − 163.·33-s − 75.5·34-s − 30.0·36-s + 148.·37-s + 15.2·38-s + 208.·39-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.849·3-s + 0.5·4-s − 0.600·6-s − 0.353·8-s − 0.277·9-s − 1.01·11-s + 0.424·12-s + 1.00·13-s + 0.250·16-s + 0.538·17-s + 0.196·18-s − 0.0918·19-s + 0.718·22-s + 1.34·23-s − 0.300·24-s − 0.713·26-s − 1.08·27-s − 0.541·29-s + 0.752·31-s − 0.176·32-s − 0.864·33-s − 0.380·34-s − 0.138·36-s + 0.658·37-s + 0.0649·38-s + 0.856·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2450 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2450\)    =    \(2 \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(144.554\)
Root analytic conductor: \(12.0230\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2450,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.946071022\)
\(L(\frac12)\) \(\approx\) \(1.946071022\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 - 4.41T + 27T^{2} \)
11 \( 1 + 37.0T + 1.33e3T^{2} \)
13 \( 1 - 47.2T + 2.19e3T^{2} \)
17 \( 1 - 37.7T + 4.91e3T^{2} \)
19 \( 1 + 7.60T + 6.85e3T^{2} \)
23 \( 1 - 148.T + 1.21e4T^{2} \)
29 \( 1 + 84.5T + 2.43e4T^{2} \)
31 \( 1 - 129.T + 2.97e4T^{2} \)
37 \( 1 - 148.T + 5.06e4T^{2} \)
41 \( 1 + 6.16T + 6.89e4T^{2} \)
43 \( 1 - 523.T + 7.95e4T^{2} \)
47 \( 1 + 423.T + 1.03e5T^{2} \)
53 \( 1 + 344.T + 1.48e5T^{2} \)
59 \( 1 + 660.T + 2.05e5T^{2} \)
61 \( 1 + 11.9T + 2.26e5T^{2} \)
67 \( 1 + 720.T + 3.00e5T^{2} \)
71 \( 1 - 161.T + 3.57e5T^{2} \)
73 \( 1 + 607.T + 3.89e5T^{2} \)
79 \( 1 - 215.T + 4.93e5T^{2} \)
83 \( 1 + 390.T + 5.71e5T^{2} \)
89 \( 1 - 1.51e3T + 7.04e5T^{2} \)
97 \( 1 - 853.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.651915628835821556456252711100, −7.86525104107069318779336690689, −7.49936849200396899452712663658, −6.31597441846534154136437548241, −5.65031846295531341395706430647, −4.56992203871242894924821581804, −3.29254135013474120153508580891, −2.85869868673944697344844679706, −1.77517892919003664212288586663, −0.65361788453495022197497466841, 0.65361788453495022197497466841, 1.77517892919003664212288586663, 2.85869868673944697344844679706, 3.29254135013474120153508580891, 4.56992203871242894924821581804, 5.65031846295531341395706430647, 6.31597441846534154136437548241, 7.49936849200396899452712663658, 7.86525104107069318779336690689, 8.651915628835821556456252711100

Graph of the $Z$-function along the critical line