Properties

Label 2-245-1.1-c5-0-60
Degree $2$
Conductor $245$
Sign $-1$
Analytic cond. $39.2940$
Root an. cond. $6.26849$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.53·2-s + 10.5·3-s − 11.4·4-s + 25·5-s + 47.9·6-s − 196.·8-s − 130.·9-s + 113.·10-s + 90.5·11-s − 121.·12-s + 74.8·13-s + 264.·15-s − 525.·16-s − 1.03e3·17-s − 592.·18-s + 31.6·19-s − 286.·20-s + 410.·22-s − 3.85e3·23-s − 2.08e3·24-s + 625·25-s + 339.·26-s − 3.95e3·27-s − 866.·29-s + 1.19e3·30-s − 3.52e3·31-s + 3.92e3·32-s + ⋯
L(s)  = 1  + 0.800·2-s + 0.679·3-s − 0.358·4-s + 0.447·5-s + 0.544·6-s − 1.08·8-s − 0.538·9-s + 0.358·10-s + 0.225·11-s − 0.243·12-s + 0.122·13-s + 0.303·15-s − 0.513·16-s − 0.866·17-s − 0.431·18-s + 0.0201·19-s − 0.160·20-s + 0.180·22-s − 1.52·23-s − 0.739·24-s + 0.200·25-s + 0.0983·26-s − 1.04·27-s − 0.191·29-s + 0.243·30-s − 0.659·31-s + 0.677·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(39.2940\)
Root analytic conductor: \(6.26849\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 245,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
7 \( 1 \)
good2 \( 1 - 4.53T + 32T^{2} \)
3 \( 1 - 10.5T + 243T^{2} \)
11 \( 1 - 90.5T + 1.61e5T^{2} \)
13 \( 1 - 74.8T + 3.71e5T^{2} \)
17 \( 1 + 1.03e3T + 1.41e6T^{2} \)
19 \( 1 - 31.6T + 2.47e6T^{2} \)
23 \( 1 + 3.85e3T + 6.43e6T^{2} \)
29 \( 1 + 866.T + 2.05e7T^{2} \)
31 \( 1 + 3.52e3T + 2.86e7T^{2} \)
37 \( 1 + 9.53e3T + 6.93e7T^{2} \)
41 \( 1 - 1.45e4T + 1.15e8T^{2} \)
43 \( 1 + 9.84e3T + 1.47e8T^{2} \)
47 \( 1 - 1.69e4T + 2.29e8T^{2} \)
53 \( 1 + 2.96e4T + 4.18e8T^{2} \)
59 \( 1 + 5.06e4T + 7.14e8T^{2} \)
61 \( 1 - 2.92e3T + 8.44e8T^{2} \)
67 \( 1 + 4.10e4T + 1.35e9T^{2} \)
71 \( 1 - 6.17e4T + 1.80e9T^{2} \)
73 \( 1 - 2.36e4T + 2.07e9T^{2} \)
79 \( 1 - 4.51e4T + 3.07e9T^{2} \)
83 \( 1 + 3.90e4T + 3.93e9T^{2} \)
89 \( 1 - 4.18e4T + 5.58e9T^{2} \)
97 \( 1 + 8.03e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83783081694962912770927663159, −9.505899271117031055515624773162, −8.922154543215514659881325676034, −7.930136787509738824111545849704, −6.38929769968070287678029298788, −5.53049335053510602963531060603, −4.29310175416946882270785403421, −3.27707991760327045233119627765, −2.06821309323459536533519211105, 0, 2.06821309323459536533519211105, 3.27707991760327045233119627765, 4.29310175416946882270785403421, 5.53049335053510602963531060603, 6.38929769968070287678029298788, 7.930136787509738824111545849704, 8.922154543215514659881325676034, 9.505899271117031055515624773162, 10.83783081694962912770927663159

Graph of the $Z$-function along the critical line