Properties

Label 8-245e4-1.1-c1e4-0-14
Degree $8$
Conductor $3603000625$
Sign $1$
Analytic cond. $14.6478$
Root an. cond. $1.39869$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 5·9-s + 6·11-s + 4·16-s + 5·25-s + 20·29-s − 4·31-s + 8·41-s − 20·45-s + 24·55-s + 20·59-s + 16·61-s − 32·71-s − 10·79-s + 16·80-s + 9·81-s − 30·99-s − 24·101-s + 10·109-s + 31·121-s − 4·125-s + 127-s + 131-s + 137-s + 139-s − 20·144-s + 80·145-s + ⋯
L(s)  = 1  + 1.78·5-s − 5/3·9-s + 1.80·11-s + 16-s + 25-s + 3.71·29-s − 0.718·31-s + 1.24·41-s − 2.98·45-s + 3.23·55-s + 2.60·59-s + 2.04·61-s − 3.79·71-s − 1.12·79-s + 1.78·80-s + 81-s − 3.01·99-s − 2.38·101-s + 0.957·109-s + 2.81·121-s − 0.357·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5/3·144-s + 6.64·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{4} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5^{4} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(14.6478\)
Root analytic conductor: \(1.39869\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5^{4} \cdot 7^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.788168173\)
\(L(\frac12)\) \(\approx\) \(2.788168173\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2^2$ \( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
7 \( 1 \)
good2$C_2^2$$\times$$C_2^2$ \( ( 1 - p T + p T^{2} - p^{2} T^{3} + p^{2} T^{4} )( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} ) \)
3$C_2^3$ \( 1 + 5 T^{2} + 16 T^{4} + 5 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 3 T - 2 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 25 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^3$ \( 1 - 15 T^{2} - 64 T^{4} - 15 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 10 T^{2} - 429 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - 5 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 2 T - 27 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$$\times$$C_2^2$ \( ( 1 - 12 T + 107 T^{2} - 12 p T^{3} + p^{2} T^{4} )( 1 + 12 T + 107 T^{2} + 12 p T^{3} + p^{2} T^{4} ) \)
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 85 T^{2} + 5016 T^{4} + 85 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 + 70 T^{2} + 2091 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 - 10 T + 41 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 8 T + 3 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 130 T^{2} + 12411 T^{4} + 130 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 16 T + 183 T^{2} - 16 p T^{3} + p^{2} T^{4} )( 1 + 16 T + 183 T^{2} + 16 p T^{3} + p^{2} T^{4} ) \)
79$C_2^2$ \( ( 1 + 5 T - 54 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 150 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 145 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.931265494229016992638800980414, −8.414533061211185525686966381918, −8.398070465175450193258320873914, −8.211024705438738982717088067916, −8.106984326874873052146191642680, −7.34304022182378409712940857556, −7.08047104719243375327967100376, −6.94072674383679909940760900255, −6.66794379850821454051260255062, −6.37574396122271204864045288004, −5.94195644595370077774356314881, −5.77936401919798097141662208653, −5.69060858199678290751267148191, −5.61727196425090991974140502442, −4.87369708269268776748929248285, −4.75157297596632432613567126781, −4.27166356562653019724860499909, −4.05571856441192226551206327509, −3.35707509226513626315733277804, −3.34073641953695866745248311369, −2.70538641767395124870631609612, −2.47770620534856526771575868493, −2.12726729207640988209960524677, −1.21258890784485549174185671340, −1.15053089769352886908412309453, 1.15053089769352886908412309453, 1.21258890784485549174185671340, 2.12726729207640988209960524677, 2.47770620534856526771575868493, 2.70538641767395124870631609612, 3.34073641953695866745248311369, 3.35707509226513626315733277804, 4.05571856441192226551206327509, 4.27166356562653019724860499909, 4.75157297596632432613567126781, 4.87369708269268776748929248285, 5.61727196425090991974140502442, 5.69060858199678290751267148191, 5.77936401919798097141662208653, 5.94195644595370077774356314881, 6.37574396122271204864045288004, 6.66794379850821454051260255062, 6.94072674383679909940760900255, 7.08047104719243375327967100376, 7.34304022182378409712940857556, 8.106984326874873052146191642680, 8.211024705438738982717088067916, 8.398070465175450193258320873914, 8.414533061211185525686966381918, 8.931265494229016992638800980414

Graph of the $Z$-function along the critical line