Properties

Label 8-2448e4-1.1-c1e4-0-11
Degree $8$
Conductor $3.591\times 10^{13}$
Sign $1$
Analytic cond. $146000.$
Root an. cond. $4.42124$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 16·13-s − 4·17-s + 16·23-s + 8·25-s + 4·29-s + 16·31-s + 28·37-s − 12·41-s + 32·47-s − 4·61-s + 64·65-s + 16·71-s + 4·73-s + 16·85-s + 12·97-s − 16·101-s + 32·103-s − 4·109-s + 12·113-s − 64·115-s − 12·125-s + 127-s + 131-s + 137-s + 139-s − 16·145-s + ⋯
L(s)  = 1  − 1.78·5-s − 4.43·13-s − 0.970·17-s + 3.33·23-s + 8/5·25-s + 0.742·29-s + 2.87·31-s + 4.60·37-s − 1.87·41-s + 4.66·47-s − 0.512·61-s + 7.93·65-s + 1.89·71-s + 0.468·73-s + 1.73·85-s + 1.21·97-s − 1.59·101-s + 3.15·103-s − 0.383·109-s + 1.12·113-s − 5.96·115-s − 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 1.32·145-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(146000.\)
Root analytic conductor: \(4.42124\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 17^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.703750719\)
\(L(\frac12)\) \(\approx\) \(2.703750719\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
good5$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} + 12 T^{3} + 14 T^{4} + 12 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
7$C_2^3$ \( 1 + 2 T^{4} + p^{4} T^{8} \)
11$C_2^3$ \( 1 - 206 T^{4} + p^{4} T^{8} \)
13$D_{4}$ \( ( 1 + 8 T + 34 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 16 T + 128 T^{2} - 816 T^{3} + 4418 T^{4} - 816 p T^{5} + 128 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 4 T + 8 T^{2} + 20 T^{3} - 1106 T^{4} + 20 p T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 16 T + 128 T^{2} - 944 T^{3} + 6178 T^{4} - 944 p T^{5} + 128 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 28 T + 392 T^{2} - 3668 T^{3} + 25486 T^{4} - 3668 p T^{5} + 392 p^{2} T^{6} - 28 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + 6 T + p T^{2} )^{2}( 1 - 46 T^{2} + p^{2} T^{4} ) \)
43$D_4\times C_2$ \( 1 - 76 T^{2} + 3094 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 - 16 T + 150 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 164 T^{2} + 11830 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} + 108 T^{3} + 302 T^{4} + 108 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
67$C_2^2$ \( ( 1 + 62 T^{2} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 16 T + 128 T^{2} - 1072 T^{3} + 8962 T^{4} - 1072 p T^{5} + 128 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^3$ \( 1 + 2402 T^{4} + p^{4} T^{8} \)
83$D_4\times C_2$ \( 1 - 188 T^{2} + 20566 T^{4} - 188 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} + 348 T^{3} - 14194 T^{4} + 348 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.52324521163496317914699553014, −6.19716227264776516878285734771, −5.76678246305103771963960973427, −5.71468770551962822472080152790, −5.62551764084231073157151026687, −4.98643633585998258884808314787, −4.96449295757044350584748943702, −4.78060764379347168060551794763, −4.70033713251472158057506138511, −4.50616022462072209965539410992, −4.37933100594080432931695986650, −4.18679943510782947889201369128, −3.89048454236151551614780440421, −3.50708213471789789302146654810, −3.01010622316719044107653687957, −3.00320468761514185092207286358, −2.93916528870316410948090038500, −2.60013900726021135651132193236, −2.36433755261793288723178151169, −2.11714023246623023451208303636, −2.08070100375707122969714259608, −0.957158360385773751764280080542, −0.940735182566264888276777939461, −0.67952185510918985763698502623, −0.43661528814740993550704076749, 0.43661528814740993550704076749, 0.67952185510918985763698502623, 0.940735182566264888276777939461, 0.957158360385773751764280080542, 2.08070100375707122969714259608, 2.11714023246623023451208303636, 2.36433755261793288723178151169, 2.60013900726021135651132193236, 2.93916528870316410948090038500, 3.00320468761514185092207286358, 3.01010622316719044107653687957, 3.50708213471789789302146654810, 3.89048454236151551614780440421, 4.18679943510782947889201369128, 4.37933100594080432931695986650, 4.50616022462072209965539410992, 4.70033713251472158057506138511, 4.78060764379347168060551794763, 4.96449295757044350584748943702, 4.98643633585998258884808314787, 5.62551764084231073157151026687, 5.71468770551962822472080152790, 5.76678246305103771963960973427, 6.19716227264776516878285734771, 6.52324521163496317914699553014

Graph of the $Z$-function along the critical line