L(s) = 1 | + 3.30i·3-s + 2.55i·5-s + 1.32·7-s − 7.91·9-s − 2.51i·11-s + 1.22i·13-s − 8.43·15-s + 0.210·17-s + i·19-s + 4.37i·21-s − 8.11·23-s − 1.51·25-s − 16.2i·27-s − 5.97i·29-s − 6.01·31-s + ⋯ |
L(s) = 1 | + 1.90i·3-s + 1.14i·5-s + 0.500·7-s − 2.63·9-s − 0.759i·11-s + 0.340i·13-s − 2.17·15-s + 0.0511·17-s + 0.229i·19-s + 0.955i·21-s − 1.69·23-s − 0.303·25-s − 3.12i·27-s − 1.10i·29-s − 1.08·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5670053817\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5670053817\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 - iT \) |
good | 3 | \( 1 - 3.30iT - 3T^{2} \) |
| 5 | \( 1 - 2.55iT - 5T^{2} \) |
| 7 | \( 1 - 1.32T + 7T^{2} \) |
| 11 | \( 1 + 2.51iT - 11T^{2} \) |
| 13 | \( 1 - 1.22iT - 13T^{2} \) |
| 17 | \( 1 - 0.210T + 17T^{2} \) |
| 23 | \( 1 + 8.11T + 23T^{2} \) |
| 29 | \( 1 + 5.97iT - 29T^{2} \) |
| 31 | \( 1 + 6.01T + 31T^{2} \) |
| 37 | \( 1 + 11.2iT - 37T^{2} \) |
| 41 | \( 1 + 0.996T + 41T^{2} \) |
| 43 | \( 1 - 7.83iT - 43T^{2} \) |
| 47 | \( 1 - 0.910T + 47T^{2} \) |
| 53 | \( 1 + 3.32iT - 53T^{2} \) |
| 59 | \( 1 - 2.04iT - 59T^{2} \) |
| 61 | \( 1 - 10.0iT - 61T^{2} \) |
| 67 | \( 1 - 11.7iT - 67T^{2} \) |
| 71 | \( 1 + 11.9T + 71T^{2} \) |
| 73 | \( 1 + 13.0T + 73T^{2} \) |
| 79 | \( 1 + 12.0T + 79T^{2} \) |
| 83 | \( 1 + 4.50iT - 83T^{2} \) |
| 89 | \( 1 - 6.64T + 89T^{2} \) |
| 97 | \( 1 - 9.92T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.658018302627593291415201091314, −8.904199657048352811622498724122, −8.190851892012580422782658753968, −7.31830638819223799531398372503, −5.92745022613581761450742028812, −5.81264110100312688509704529822, −4.52697780507453524001683273214, −3.93657571682466919174407941981, −3.20149494471153202690208114362, −2.27482797605108030577759255340,
0.17989429390841665178433837330, 1.47426112193773438982692338406, 1.88726960429090926987106521426, 3.16828396620890574849272390089, 4.59171695164788041710735843957, 5.35720794827260707897244484658, 6.10305481975676027414242594233, 7.00550830407503819199385645368, 7.60628654620479700194840238259, 8.326998552131481618002528522434