L(s) = 1 | + 2.46i·3-s + 3.22i·5-s − 4.04·7-s − 3.09·9-s + 6.41i·11-s − 0.815i·13-s − 7.96·15-s − 2.62·17-s − i·19-s − 9.97i·21-s − 6.16·23-s − 5.41·25-s − 0.233i·27-s − 3.85i·29-s + 7.43·31-s + ⋯ |
L(s) = 1 | + 1.42i·3-s + 1.44i·5-s − 1.52·7-s − 1.03·9-s + 1.93i·11-s − 0.226i·13-s − 2.05·15-s − 0.635·17-s − 0.229i·19-s − 2.17i·21-s − 1.28·23-s − 1.08·25-s − 0.0449i·27-s − 0.716i·29-s + 1.33·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8129449743\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8129449743\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 - 2.46iT - 3T^{2} \) |
| 5 | \( 1 - 3.22iT - 5T^{2} \) |
| 7 | \( 1 + 4.04T + 7T^{2} \) |
| 11 | \( 1 - 6.41iT - 11T^{2} \) |
| 13 | \( 1 + 0.815iT - 13T^{2} \) |
| 17 | \( 1 + 2.62T + 17T^{2} \) |
| 23 | \( 1 + 6.16T + 23T^{2} \) |
| 29 | \( 1 + 3.85iT - 29T^{2} \) |
| 31 | \( 1 - 7.43T + 31T^{2} \) |
| 37 | \( 1 - 5.13iT - 37T^{2} \) |
| 41 | \( 1 - 11.5T + 41T^{2} \) |
| 43 | \( 1 + 0.0837iT - 43T^{2} \) |
| 47 | \( 1 - 3.99T + 47T^{2} \) |
| 53 | \( 1 - 4.22iT - 53T^{2} \) |
| 59 | \( 1 - 8.53iT - 59T^{2} \) |
| 61 | \( 1 + 5.72iT - 61T^{2} \) |
| 67 | \( 1 - 11.4iT - 67T^{2} \) |
| 71 | \( 1 - 1.10T + 71T^{2} \) |
| 73 | \( 1 - 7.25T + 73T^{2} \) |
| 79 | \( 1 + 13.9T + 79T^{2} \) |
| 83 | \( 1 - 6.51iT - 83T^{2} \) |
| 89 | \( 1 - 15.3T + 89T^{2} \) |
| 97 | \( 1 + 13.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.654309012788028931656682759340, −9.264365253401270003655201855178, −7.915062556579002435363885417258, −7.00940069990705942713617875938, −6.51896542087460255850078733826, −5.69616437722014839485710053591, −4.36489112381430393095663051422, −4.07258970240602493451064327897, −2.94642044184724920267892714552, −2.42986749490249463427650544010,
0.32269431650503877609098630534, 0.976732974636620877916835594544, 2.26248154743866684085597414360, 3.31983266245397219977151432408, 4.27669213002676029860876877780, 5.61073805641412627617078576512, 6.12121037728056907544932694883, 6.64935376613234102729967799433, 7.73447937348962307622943485131, 8.366016718056471929942599472159