| L(s) = 1 | + (−0.707 − 0.707i)3-s + (−0.585 + 0.585i)7-s + 1.00i·9-s − 0.828i·11-s + (−1.41 + 1.41i)13-s + (−0.828 − 0.828i)17-s + 3.65·19-s + 0.828·21-s + (−2 − 2i)23-s + (0.707 − 0.707i)27-s + 5.65i·29-s − 6i·31-s + (−0.585 + 0.585i)33-s + (5.41 + 5.41i)37-s + 2.00·39-s + ⋯ |
| L(s) = 1 | + (−0.408 − 0.408i)3-s + (−0.221 + 0.221i)7-s + 0.333i·9-s − 0.249i·11-s + (−0.392 + 0.392i)13-s + (−0.200 − 0.200i)17-s + 0.838·19-s + 0.180·21-s + (−0.417 − 0.417i)23-s + (0.136 − 0.136i)27-s + 1.05i·29-s − 1.07i·31-s + (−0.101 + 0.101i)33-s + (0.890 + 0.890i)37-s + 0.320·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.229i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.321696587\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.321696587\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 + (0.585 - 0.585i)T - 7iT^{2} \) |
| 11 | \( 1 + 0.828iT - 11T^{2} \) |
| 13 | \( 1 + (1.41 - 1.41i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.828 + 0.828i)T + 17iT^{2} \) |
| 19 | \( 1 - 3.65T + 19T^{2} \) |
| 23 | \( 1 + (2 + 2i)T + 23iT^{2} \) |
| 29 | \( 1 - 5.65iT - 29T^{2} \) |
| 31 | \( 1 + 6iT - 31T^{2} \) |
| 37 | \( 1 + (-5.41 - 5.41i)T + 37iT^{2} \) |
| 41 | \( 1 - 3.65T + 41T^{2} \) |
| 43 | \( 1 + 43iT^{2} \) |
| 47 | \( 1 + (0.828 - 0.828i)T - 47iT^{2} \) |
| 53 | \( 1 + (6.82 - 6.82i)T - 53iT^{2} \) |
| 59 | \( 1 - 14.4T + 59T^{2} \) |
| 61 | \( 1 - 6T + 61T^{2} \) |
| 67 | \( 1 + (6.82 - 6.82i)T - 67iT^{2} \) |
| 71 | \( 1 + 5.65iT - 71T^{2} \) |
| 73 | \( 1 + (-8.48 + 8.48i)T - 73iT^{2} \) |
| 79 | \( 1 - 9.31T + 79T^{2} \) |
| 83 | \( 1 + (1.17 + 1.17i)T + 83iT^{2} \) |
| 89 | \( 1 - 11.6iT - 89T^{2} \) |
| 97 | \( 1 + (-1.17 - 1.17i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.081723279228659751915725433883, −8.086952237218480514312100495313, −7.45490837470988208550804550395, −6.61218632788694044545240848859, −5.96537982709506937944249442355, −5.11526953904957063581136506049, −4.27740484933396247978511086524, −3.11291147221046229336346407371, −2.17486678879748302912785047399, −0.878093604955366754523195541136,
0.63882784426825828617881436044, 2.13257807370486007222680568383, 3.30604938802775345986726930135, 4.10813621786364873053736092686, 5.03772767690865269289950168294, 5.71285962437596355843086014127, 6.59474943149775195497250857328, 7.37860480056919113596070539855, 8.124075273106751566705952825548, 9.058151550653546733706617346209