Properties

Label 2-240-3.2-c4-0-28
Degree $2$
Conductor $240$
Sign $-0.461 + 0.887i$
Analytic cond. $24.8087$
Root an. cond. $4.98084$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (7.98 + 4.15i)3-s − 11.1i·5-s − 61.6·7-s + (46.4 + 66.3i)9-s − 108. i·11-s − 63.7·13-s + (46.4 − 89.2i)15-s − 175. i·17-s − 301.·19-s + (−491. − 255. i)21-s − 1.03e3i·23-s − 125.·25-s + (95.6 + 722. i)27-s − 179. i·29-s − 1.06e3·31-s + ⋯
L(s)  = 1  + (0.887 + 0.461i)3-s − 0.447i·5-s − 1.25·7-s + (0.573 + 0.818i)9-s − 0.899i·11-s − 0.376·13-s + (0.206 − 0.396i)15-s − 0.606i·17-s − 0.835·19-s + (−1.11 − 0.580i)21-s − 1.96i·23-s − 0.200·25-s + (0.131 + 0.991i)27-s − 0.213i·29-s − 1.11·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.461 + 0.887i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 240 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.461 + 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(240\)    =    \(2^{4} \cdot 3 \cdot 5\)
Sign: $-0.461 + 0.887i$
Analytic conductor: \(24.8087\)
Root analytic conductor: \(4.98084\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{240} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 240,\ (\ :2),\ -0.461 + 0.887i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.094101729\)
\(L(\frac12)\) \(\approx\) \(1.094101729\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-7.98 - 4.15i)T \)
5 \( 1 + 11.1iT \)
good7 \( 1 + 61.6T + 2.40e3T^{2} \)
11 \( 1 + 108. iT - 1.46e4T^{2} \)
13 \( 1 + 63.7T + 2.85e4T^{2} \)
17 \( 1 + 175. iT - 8.35e4T^{2} \)
19 \( 1 + 301.T + 1.30e5T^{2} \)
23 \( 1 + 1.03e3iT - 2.79e5T^{2} \)
29 \( 1 + 179. iT - 7.07e5T^{2} \)
31 \( 1 + 1.06e3T + 9.23e5T^{2} \)
37 \( 1 + 1.06e3T + 1.87e6T^{2} \)
41 \( 1 + 173. iT - 2.82e6T^{2} \)
43 \( 1 - 3.03e3T + 3.41e6T^{2} \)
47 \( 1 + 935. iT - 4.87e6T^{2} \)
53 \( 1 + 423. iT - 7.89e6T^{2} \)
59 \( 1 + 3.18e3iT - 1.21e7T^{2} \)
61 \( 1 + 2.30e3T + 1.38e7T^{2} \)
67 \( 1 + 4.21e3T + 2.01e7T^{2} \)
71 \( 1 - 475. iT - 2.54e7T^{2} \)
73 \( 1 + 2.14e3T + 2.83e7T^{2} \)
79 \( 1 + 3.10e3T + 3.89e7T^{2} \)
83 \( 1 - 3.76e3iT - 4.74e7T^{2} \)
89 \( 1 + 8.26e3iT - 6.27e7T^{2} \)
97 \( 1 - 9.31e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90184853304727308939836698528, −10.06345230428797109884794791116, −9.100967692810105952699489957400, −8.522241698732452293223107569671, −7.23043331726895555774631009711, −6.05389638572765934749500325882, −4.63505059987487544938547710498, −3.48886977480571015415626426899, −2.41628775205237883645708287980, −0.30037588920490447875992941355, 1.79545989661179870178733797400, 3.04270325478890121287274620262, 4.03583753127688042012503866248, 5.92039957444893918404244361141, 6.99367960350332673774016730001, 7.61685217665969893505359980543, 9.044681821971163166816954743546, 9.669935223620479410834134985767, 10.61903993592828030537191230109, 12.10238337353968986527412286251

Graph of the $Z$-function along the critical line