Properties

Label 2-24-8.3-c6-0-6
Degree $2$
Conductor $24$
Sign $0.924 + 0.380i$
Analytic cond. $5.52129$
Root an. cond. $2.34974$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.86 + 6.35i)2-s + 15.5·3-s + (−16.6 − 61.7i)4-s − 100. i·5-s + (−75.8 + 98.9i)6-s − 277. i·7-s + (473. + 194. i)8-s + 243·9-s + (640. + 490. i)10-s + 1.92e3·11-s + (−259. − 963. i)12-s − 1.72e3i·13-s + (1.76e3 + 1.35e3i)14-s − 1.57e3i·15-s + (−3.54e3 + 2.05e3i)16-s + 1.65e3·17-s + ⋯
L(s)  = 1  + (−0.608 + 0.793i)2-s + 0.577·3-s + (−0.260 − 0.965i)4-s − 0.806i·5-s + (−0.351 + 0.458i)6-s − 0.809i·7-s + (0.924 + 0.380i)8-s + 0.333·9-s + (0.640 + 0.490i)10-s + 1.44·11-s + (−0.150 − 0.557i)12-s − 0.783i·13-s + (0.642 + 0.492i)14-s − 0.465i·15-s + (−0.864 + 0.502i)16-s + 0.336·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.924 + 0.380i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.924 + 0.380i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24\)    =    \(2^{3} \cdot 3\)
Sign: $0.924 + 0.380i$
Analytic conductor: \(5.52129\)
Root analytic conductor: \(2.34974\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{24} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 24,\ (\ :3),\ 0.924 + 0.380i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.32807 - 0.262529i\)
\(L(\frac12)\) \(\approx\) \(1.32807 - 0.262529i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (4.86 - 6.35i)T \)
3 \( 1 - 15.5T \)
good5 \( 1 + 100. iT - 1.56e4T^{2} \)
7 \( 1 + 277. iT - 1.17e5T^{2} \)
11 \( 1 - 1.92e3T + 1.77e6T^{2} \)
13 \( 1 + 1.72e3iT - 4.82e6T^{2} \)
17 \( 1 - 1.65e3T + 2.41e7T^{2} \)
19 \( 1 + 9.36e3T + 4.70e7T^{2} \)
23 \( 1 + 1.56e4iT - 1.48e8T^{2} \)
29 \( 1 - 2.84e4iT - 5.94e8T^{2} \)
31 \( 1 + 3.02e4iT - 8.87e8T^{2} \)
37 \( 1 - 7.25e4iT - 2.56e9T^{2} \)
41 \( 1 - 3.41e4T + 4.75e9T^{2} \)
43 \( 1 + 7.12e4T + 6.32e9T^{2} \)
47 \( 1 - 1.49e5iT - 1.07e10T^{2} \)
53 \( 1 - 2.35e5iT - 2.21e10T^{2} \)
59 \( 1 + 1.35e5T + 4.21e10T^{2} \)
61 \( 1 + 1.06e5iT - 5.15e10T^{2} \)
67 \( 1 - 2.07e5T + 9.04e10T^{2} \)
71 \( 1 - 2.32e5iT - 1.28e11T^{2} \)
73 \( 1 - 6.45e5T + 1.51e11T^{2} \)
79 \( 1 + 5.35e5iT - 2.43e11T^{2} \)
83 \( 1 - 6.60e5T + 3.26e11T^{2} \)
89 \( 1 + 9.42e5T + 4.96e11T^{2} \)
97 \( 1 + 1.16e6T + 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.64818799513144551939656777510, −15.07307939319641936411959035555, −14.12264528836642146586355736826, −12.74097563226540873795412528128, −10.58812313914034134597800396458, −9.187184588457061369450001384055, −8.139954074411440933030519777551, −6.56133399882507671285505979024, −4.43912054354703705162433216843, −1.04885376408749071552740768687, 2.03302768855523391978008002563, 3.74378858056220502476601432111, 6.84107863621455815823785453193, 8.610407732253279484490301591344, 9.639807202000321828934098650299, 11.20575881272298960254425773609, 12.30611919924025232951976519510, 13.93288808807711946033222484938, 15.07847938603603811631602708226, 16.74250348389591648092254515211

Graph of the $Z$-function along the critical line