Properties

Label 2-24-24.5-c34-0-22
Degree $2$
Conductor $24$
Sign $1$
Analytic cond. $175.741$
Root an. cond. $13.2567$
Motivic weight $34$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.31e5·2-s + 1.29e8·3-s + 1.71e10·4-s − 4.23e11·5-s − 1.69e13·6-s − 3.80e14·7-s − 2.25e15·8-s + 1.66e16·9-s + 5.55e16·10-s − 9.96e17·11-s + 2.21e18·12-s + 4.99e19·14-s − 5.47e19·15-s + 2.95e20·16-s − 2.18e21·18-s − 7.28e21·20-s − 4.91e22·21-s + 1.30e23·22-s − 2.90e23·24-s − 4.02e23·25-s + 2.15e24·27-s − 6.54e24·28-s − 1.34e25·29-s + 7.17e24·30-s − 4.40e25·31-s − 3.86e25·32-s − 1.28e26·33-s + ⋯
L(s)  = 1  − 2-s + 3-s + 4-s − 0.555·5-s − 6-s − 1.63·7-s − 8-s + 9-s + 0.555·10-s − 1.97·11-s + 12-s + 1.63·14-s − 0.555·15-s + 16-s − 18-s − 0.555·20-s − 1.63·21-s + 1.97·22-s − 24-s − 0.691·25-s + 27-s − 1.63·28-s − 1.84·29-s + 0.555·30-s − 1.95·31-s − 32-s − 1.97·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(35-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s+17) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24\)    =    \(2^{3} \cdot 3\)
Sign: $1$
Analytic conductor: \(175.741\)
Root analytic conductor: \(13.2567\)
Motivic weight: \(34\)
Rational: yes
Arithmetic: yes
Character: $\chi_{24} (5, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 24,\ (\ :17),\ 1)\)

Particular Values

\(L(\frac{35}{2})\) \(\approx\) \(0.2295841752\)
\(L(\frac12)\) \(\approx\) \(0.2295841752\)
\(L(18)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{17} T \)
3 \( 1 - p^{17} T \)
good5 \( 1 + 423872734078 T + p^{34} T^{2} \)
7 \( 1 + 380838707036170 T + p^{34} T^{2} \)
11 \( 1 + 996717635485503370 T + p^{34} T^{2} \)
13 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
17 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
19 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
23 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
29 \( 1 + \)\(13\!\cdots\!50\)\( T + p^{34} T^{2} \)
31 \( 1 + \)\(44\!\cdots\!22\)\( T + p^{34} T^{2} \)
37 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
41 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
43 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
47 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
53 \( 1 - \)\(12\!\cdots\!26\)\( T + p^{34} T^{2} \)
59 \( 1 + \)\(25\!\cdots\!70\)\( T + p^{34} T^{2} \)
61 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
67 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
71 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
73 \( 1 + \)\(31\!\cdots\!50\)\( T + p^{34} T^{2} \)
79 \( 1 + \)\(38\!\cdots\!18\)\( T + p^{34} T^{2} \)
83 \( 1 + \)\(21\!\cdots\!46\)\( T + p^{34} T^{2} \)
89 \( ( 1 - p^{17} T )( 1 + p^{17} T ) \)
97 \( 1 - \)\(11\!\cdots\!70\)\( T + p^{34} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82423406614799591530532343325, −9.866247853052822918024119470993, −9.040208411626343383712878203839, −7.77951105358394591533533197246, −7.21938378394378036128354997590, −5.72153565189302160076728093725, −3.66047678436437355723427819001, −2.91299316254967153407391410149, −1.95074914824107865018542942152, −0.20993534257199541537031882562, 0.20993534257199541537031882562, 1.95074914824107865018542942152, 2.91299316254967153407391410149, 3.66047678436437355723427819001, 5.72153565189302160076728093725, 7.21938378394378036128354997590, 7.77951105358394591533533197246, 9.040208411626343383712878203839, 9.866247853052822918024119470993, 10.82423406614799591530532343325

Graph of the $Z$-function along the critical line