Properties

Label 2-24-1.1-c11-0-4
Degree $2$
Conductor $24$
Sign $-1$
Analytic cond. $18.4402$
Root an. cond. $4.29420$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 243·3-s + 1.87e3·5-s − 7.23e4·7-s + 5.90e4·9-s + 1.47e5·11-s − 1.56e6·13-s + 4.54e5·15-s − 1.45e5·17-s + 1.09e6·19-s − 1.75e7·21-s − 6.00e7·23-s − 4.53e7·25-s + 1.43e7·27-s − 1.96e7·29-s − 2.39e8·31-s + 3.59e7·33-s − 1.35e8·35-s + 4.88e8·37-s − 3.79e8·39-s + 4.70e7·41-s + 4.28e8·43-s + 1.10e8·45-s + 4.50e8·47-s + 3.25e9·49-s − 3.54e7·51-s + 4.33e9·53-s + 2.76e8·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.267·5-s − 1.62·7-s + 1/3·9-s + 0.276·11-s − 1.16·13-s + 0.154·15-s − 0.0249·17-s + 0.101·19-s − 0.938·21-s − 1.94·23-s − 0.928·25-s + 0.192·27-s − 0.177·29-s − 1.50·31-s + 0.159·33-s − 0.435·35-s + 1.15·37-s − 0.674·39-s + 0.0634·41-s + 0.444·43-s + 0.0892·45-s + 0.286·47-s + 1.64·49-s − 0.0143·51-s + 1.42·53-s + 0.0741·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(24\)    =    \(2^{3} \cdot 3\)
Sign: $-1$
Analytic conductor: \(18.4402\)
Root analytic conductor: \(4.29420\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 24,\ (\ :11/2),\ -1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p^{5} T \)
good5 \( 1 - 374 p T + p^{11} T^{2} \)
7 \( 1 + 72312 T + p^{11} T^{2} \)
11 \( 1 - 147940 T + p^{11} T^{2} \)
13 \( 1 + 1562858 T + p^{11} T^{2} \)
17 \( 1 + 145774 T + p^{11} T^{2} \)
19 \( 1 - 1096796 T + p^{11} T^{2} \)
23 \( 1 + 60014264 T + p^{11} T^{2} \)
29 \( 1 + 19626954 T + p^{11} T^{2} \)
31 \( 1 + 239950480 T + p^{11} T^{2} \)
37 \( 1 - 488238078 T + p^{11} T^{2} \)
41 \( 1 - 47066010 T + p^{11} T^{2} \)
43 \( 1 - 428866948 T + p^{11} T^{2} \)
47 \( 1 - 450903216 T + p^{11} T^{2} \)
53 \( 1 - 4336685950 T + p^{11} T^{2} \)
59 \( 1 + 8937556460 T + p^{11} T^{2} \)
61 \( 1 - 4673884486 T + p^{11} T^{2} \)
67 \( 1 - 7498937612 T + p^{11} T^{2} \)
71 \( 1 + 27032101480 T + p^{11} T^{2} \)
73 \( 1 - 159947146 p T + p^{11} T^{2} \)
79 \( 1 - 2478876544 T + p^{11} T^{2} \)
83 \( 1 - 42745596956 T + p^{11} T^{2} \)
89 \( 1 + 93270772662 T + p^{11} T^{2} \)
97 \( 1 - 118032786914 T + p^{11} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.41297998522453337062311051850, −13.22843922359218547184044647190, −12.15786874775221019944580020966, −10.05839546974392453051291703944, −9.315567654893807959216058477644, −7.47574620600309386098192087867, −6.02178808990392592474071709002, −3.82055112567291176513883686895, −2.32731464365634502448968700085, 0, 2.32731464365634502448968700085, 3.82055112567291176513883686895, 6.02178808990392592474071709002, 7.47574620600309386098192087867, 9.315567654893807959216058477644, 10.05839546974392453051291703944, 12.15786874775221019944580020966, 13.22843922359218547184044647190, 14.41297998522453337062311051850

Graph of the $Z$-function along the critical line