Properties

Label 2-2368-37.36-c1-0-63
Degree $2$
Conductor $2368$
Sign $-0.600 - 0.799i$
Analytic cond. $18.9085$
Root an. cond. $4.34839$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.94·3-s − 3.19i·5-s − 3.28·7-s + 5.69·9-s − 1.70·11-s − 1.45i·13-s + 9.43i·15-s − 4.77i·17-s + 0.209i·19-s + 9.68·21-s − 8.73i·23-s − 5.23·25-s − 7.93·27-s − 2.65i·29-s − 9.47i·31-s + ⋯
L(s)  = 1  − 1.70·3-s − 1.43i·5-s − 1.24·7-s + 1.89·9-s − 0.514·11-s − 0.403i·13-s + 2.43i·15-s − 1.15i·17-s + 0.0481i·19-s + 2.11·21-s − 1.82i·23-s − 1.04·25-s − 1.52·27-s − 0.492i·29-s − 1.70i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.600 - 0.799i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.600 - 0.799i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2368\)    =    \(2^{6} \cdot 37\)
Sign: $-0.600 - 0.799i$
Analytic conductor: \(18.9085\)
Root analytic conductor: \(4.34839\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2368} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2368,\ (\ :1/2),\ -0.600 - 0.799i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4006003658\)
\(L(\frac12)\) \(\approx\) \(0.4006003658\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 + (3.65 + 4.86i)T \)
good3 \( 1 + 2.94T + 3T^{2} \)
5 \( 1 + 3.19iT - 5T^{2} \)
7 \( 1 + 3.28T + 7T^{2} \)
11 \( 1 + 1.70T + 11T^{2} \)
13 \( 1 + 1.45iT - 13T^{2} \)
17 \( 1 + 4.77iT - 17T^{2} \)
19 \( 1 - 0.209iT - 19T^{2} \)
23 \( 1 + 8.73iT - 23T^{2} \)
29 \( 1 + 2.65iT - 29T^{2} \)
31 \( 1 + 9.47iT - 31T^{2} \)
41 \( 1 + 11.3T + 41T^{2} \)
43 \( 1 + 8.67iT - 43T^{2} \)
47 \( 1 - 12.6T + 47T^{2} \)
53 \( 1 - 5.11T + 53T^{2} \)
59 \( 1 + 1.65iT - 59T^{2} \)
61 \( 1 - 1.90iT - 61T^{2} \)
67 \( 1 + 1.90T + 67T^{2} \)
71 \( 1 + 9.51T + 71T^{2} \)
73 \( 1 - 6.10T + 73T^{2} \)
79 \( 1 + 3.62iT - 79T^{2} \)
83 \( 1 - 3.20T + 83T^{2} \)
89 \( 1 - 10.1iT - 89T^{2} \)
97 \( 1 - 10.1iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.630810070813340016609062707183, −7.52169994018789252382475370487, −6.73968597167131112896556818335, −5.95660357799745599690602364144, −5.36505933206883166042801024616, −4.73930031040628284872231638408, −3.89773486973395360050930667992, −2.38985158934333964396894771459, −0.64812975525307623404504073711, −0.29892658938483430021925306343, 1.54788389231097456760361166196, 3.06931035329527436269430739813, 3.70403509523629286739494326804, 4.96535250654400860950142002040, 5.79520051775789354376132380400, 6.37914472272911532598976387231, 6.91039159411066601291222414191, 7.46214900874181876867831138816, 8.823137622545310411010867426856, 9.978689499971102870583967163677

Graph of the $Z$-function along the critical line