Properties

Label 2-2368-37.36-c1-0-42
Degree $2$
Conductor $2368$
Sign $0.0186 + 0.999i$
Analytic cond. $18.9085$
Root an. cond. $4.34839$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.91·3-s − 0.910i·5-s + 3.26·7-s + 0.648·9-s − 2.79·11-s + 1.79i·13-s + 1.73i·15-s − 4.96i·17-s + 2.96i·19-s − 6.22·21-s − 1.35i·23-s + 4.17·25-s + 4.49·27-s − 5.69i·29-s + 6.05i·31-s + ⋯
L(s)  = 1  − 1.10·3-s − 0.407i·5-s + 1.23·7-s + 0.216·9-s − 0.843·11-s + 0.498i·13-s + 0.448i·15-s − 1.20i·17-s + 0.681i·19-s − 1.35·21-s − 0.281i·23-s + 0.834·25-s + 0.864·27-s − 1.05i·29-s + 1.08i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0186 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0186 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2368\)    =    \(2^{6} \cdot 37\)
Sign: $0.0186 + 0.999i$
Analytic conductor: \(18.9085\)
Root analytic conductor: \(4.34839\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2368} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2368,\ (\ :1/2),\ 0.0186 + 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9530819247\)
\(L(\frac12)\) \(\approx\) \(0.9530819247\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 + (0.113 + 6.08i)T \)
good3 \( 1 + 1.91T + 3T^{2} \)
5 \( 1 + 0.910iT - 5T^{2} \)
7 \( 1 - 3.26T + 7T^{2} \)
11 \( 1 + 2.79T + 11T^{2} \)
13 \( 1 - 1.79iT - 13T^{2} \)
17 \( 1 + 4.96iT - 17T^{2} \)
19 \( 1 - 2.96iT - 19T^{2} \)
23 \( 1 + 1.35iT - 23T^{2} \)
29 \( 1 + 5.69iT - 29T^{2} \)
31 \( 1 - 6.05iT - 31T^{2} \)
41 \( 1 + 1.05T + 41T^{2} \)
43 \( 1 - 0.851iT - 43T^{2} \)
47 \( 1 + 2.91T + 47T^{2} \)
53 \( 1 + 5.70T + 53T^{2} \)
59 \( 1 + 0.342iT - 59T^{2} \)
61 \( 1 + 2.28iT - 61T^{2} \)
67 \( 1 - 3.35T + 67T^{2} \)
71 \( 1 + 9.19T + 71T^{2} \)
73 \( 1 - 15.9T + 73T^{2} \)
79 \( 1 - 9.06iT - 79T^{2} \)
83 \( 1 - 6.73T + 83T^{2} \)
89 \( 1 + 4.26iT - 89T^{2} \)
97 \( 1 + 10.6iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.658918684372926778233663266611, −8.047627370310051256824722864194, −7.22675010011099067329520923387, −6.36496100421093328730148944137, −5.37643988085632758710025278755, −5.02727137532980408814006211856, −4.32005807529156243570263453435, −2.84917227492470978199207645583, −1.65955596590029193385496100707, −0.43883955364637659747313951281, 1.08245722826055031530549891189, 2.33491743564399133179706082312, 3.45941552265599163524916632800, 4.82212410713180198640900369695, 5.08531224368804500175582870480, 6.01269694304090265456182027451, 6.69803327274867774266819538850, 7.71447201157868388918947343349, 8.216335731538895051842139586716, 9.090312040375986516617250947378

Graph of the $Z$-function along the critical line