Properties

Label 2-2368-37.36-c1-0-72
Degree $2$
Conductor $2368$
Sign $-0.164 - 0.986i$
Analytic cond. $18.9085$
Root an. cond. $4.34839$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2i·5-s − 3·7-s − 2·9-s − 3·11-s − 6i·13-s + 2i·15-s − 2i·17-s − 6i·19-s + 3·21-s + 4i·23-s + 25-s + 5·27-s − 4i·29-s + 3·33-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894i·5-s − 1.13·7-s − 0.666·9-s − 0.904·11-s − 1.66i·13-s + 0.516i·15-s − 0.485i·17-s − 1.37i·19-s + 0.654·21-s + 0.834i·23-s + 0.200·25-s + 0.962·27-s − 0.742i·29-s + 0.522·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.164 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.164 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2368\)    =    \(2^{6} \cdot 37\)
Sign: $-0.164 - 0.986i$
Analytic conductor: \(18.9085\)
Root analytic conductor: \(4.34839\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2368} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 2368,\ (\ :1/2),\ -0.164 - 0.986i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 + (-1 - 6i)T \)
good3 \( 1 + T + 3T^{2} \)
5 \( 1 + 2iT - 5T^{2} \)
7 \( 1 + 3T + 7T^{2} \)
11 \( 1 + 3T + 11T^{2} \)
13 \( 1 + 6iT - 13T^{2} \)
17 \( 1 + 2iT - 17T^{2} \)
19 \( 1 + 6iT - 19T^{2} \)
23 \( 1 - 4iT - 23T^{2} \)
29 \( 1 + 4iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
41 \( 1 + 3T + 41T^{2} \)
43 \( 1 - 6iT - 43T^{2} \)
47 \( 1 + 3T + 47T^{2} \)
53 \( 1 + 9T + 53T^{2} \)
59 \( 1 - 4iT - 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 - 3T + 71T^{2} \)
73 \( 1 - 9T + 73T^{2} \)
79 \( 1 - 6iT - 79T^{2} \)
83 \( 1 - 9T + 83T^{2} \)
89 \( 1 - 14iT - 89T^{2} \)
97 \( 1 + 12iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.362034708896369058836038054113, −7.79163653674513405929727054482, −6.73421133728748536837135631159, −5.94550052436284735064388823043, −5.23728753485854125207509354617, −4.75127544913418706924960525672, −3.19754724921036881861349042942, −2.76262106266741339110058683983, −0.827917183712101803789862456877, 0, 1.97391687120051610526195232885, 2.99415137854395561503719447266, 3.73377053221049617452831688812, 4.86539845146700151465527556777, 5.87254616825588994738042919968, 6.44161584788000879906344921298, 6.93480755278313848491866791224, 7.946266237009130432831038258671, 8.842188364743402886253391717201

Graph of the $Z$-function along the critical line