Properties

Label 2-2366-1.1-c3-0-56
Degree $2$
Conductor $2366$
Sign $1$
Analytic cond. $139.598$
Root an. cond. $11.8151$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 1.05·3-s + 4·4-s + 9.53·5-s − 2.11·6-s + 7·7-s − 8·8-s − 25.8·9-s − 19.0·10-s − 42.2·11-s + 4.22·12-s − 14·14-s + 10.0·15-s + 16·16-s − 12.2·17-s + 51.7·18-s + 64.7·19-s + 38.1·20-s + 7.39·21-s + 84.4·22-s + 164.·23-s − 8.44·24-s − 34.0·25-s − 55.8·27-s + 28·28-s + 172.·29-s − 20.1·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.203·3-s + 0.5·4-s + 0.852·5-s − 0.143·6-s + 0.377·7-s − 0.353·8-s − 0.958·9-s − 0.602·10-s − 1.15·11-s + 0.101·12-s − 0.267·14-s + 0.173·15-s + 0.250·16-s − 0.174·17-s + 0.677·18-s + 0.781·19-s + 0.426·20-s + 0.0768·21-s + 0.818·22-s + 1.49·23-s − 0.0718·24-s − 0.272·25-s − 0.398·27-s + 0.188·28-s + 1.10·29-s − 0.122·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2366\)    =    \(2 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(139.598\)
Root analytic conductor: \(11.8151\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2366,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.616989497\)
\(L(\frac12)\) \(\approx\) \(1.616989497\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
7 \( 1 - 7T \)
13 \( 1 \)
good3 \( 1 - 1.05T + 27T^{2} \)
5 \( 1 - 9.53T + 125T^{2} \)
11 \( 1 + 42.2T + 1.33e3T^{2} \)
17 \( 1 + 12.2T + 4.91e3T^{2} \)
19 \( 1 - 64.7T + 6.85e3T^{2} \)
23 \( 1 - 164.T + 1.21e4T^{2} \)
29 \( 1 - 172.T + 2.43e4T^{2} \)
31 \( 1 + 201.T + 2.97e4T^{2} \)
37 \( 1 + 330.T + 5.06e4T^{2} \)
41 \( 1 - 421.T + 6.89e4T^{2} \)
43 \( 1 + 271.T + 7.95e4T^{2} \)
47 \( 1 + 225.T + 1.03e5T^{2} \)
53 \( 1 + 202.T + 1.48e5T^{2} \)
59 \( 1 - 583.T + 2.05e5T^{2} \)
61 \( 1 + 389.T + 2.26e5T^{2} \)
67 \( 1 + 108.T + 3.00e5T^{2} \)
71 \( 1 - 1.09e3T + 3.57e5T^{2} \)
73 \( 1 - 858.T + 3.89e5T^{2} \)
79 \( 1 + 107.T + 4.93e5T^{2} \)
83 \( 1 + 736.T + 5.71e5T^{2} \)
89 \( 1 - 831.T + 7.04e5T^{2} \)
97 \( 1 - 1.54e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.667271487898916385782102132721, −8.000560667548145352366876992828, −7.25337162845465196881544589499, −6.35906251686873871506171333132, −5.41440514640839313272585829811, −5.04627424693228619913655841821, −3.38417781484022799872608362105, −2.62429480854996072247265440810, −1.81866511433383652106493663920, −0.60859713202084822677261850208, 0.60859713202084822677261850208, 1.81866511433383652106493663920, 2.62429480854996072247265440810, 3.38417781484022799872608362105, 5.04627424693228619913655841821, 5.41440514640839313272585829811, 6.35906251686873871506171333132, 7.25337162845465196881544589499, 8.000560667548145352366876992828, 8.667271487898916385782102132721

Graph of the $Z$-function along the critical line