Properties

Label 2-2366-1.1-c3-0-3
Degree $2$
Conductor $2366$
Sign $1$
Analytic cond. $139.598$
Root an. cond. $11.8151$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 2.09·3-s + 4·4-s − 4.70·5-s + 4.19·6-s + 7·7-s − 8·8-s − 22.5·9-s + 9.41·10-s − 31.8·11-s − 8.39·12-s − 14·14-s + 9.88·15-s + 16·16-s − 33.6·17-s + 45.1·18-s − 83.2·19-s − 18.8·20-s − 14.6·21-s + 63.7·22-s − 11.7·23-s + 16.7·24-s − 102.·25-s + 104.·27-s + 28·28-s − 275.·29-s − 19.7·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.403·3-s + 0.5·4-s − 0.421·5-s + 0.285·6-s + 0.377·7-s − 0.353·8-s − 0.836·9-s + 0.297·10-s − 0.874·11-s − 0.201·12-s − 0.267·14-s + 0.170·15-s + 0.250·16-s − 0.479·17-s + 0.591·18-s − 1.00·19-s − 0.210·20-s − 0.152·21-s + 0.618·22-s − 0.106·23-s + 0.142·24-s − 0.822·25-s + 0.741·27-s + 0.188·28-s − 1.76·29-s − 0.120·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2366\)    =    \(2 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(139.598\)
Root analytic conductor: \(11.8151\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2366,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1194689466\)
\(L(\frac12)\) \(\approx\) \(0.1194689466\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
7 \( 1 - 7T \)
13 \( 1 \)
good3 \( 1 + 2.09T + 27T^{2} \)
5 \( 1 + 4.70T + 125T^{2} \)
11 \( 1 + 31.8T + 1.33e3T^{2} \)
17 \( 1 + 33.6T + 4.91e3T^{2} \)
19 \( 1 + 83.2T + 6.85e3T^{2} \)
23 \( 1 + 11.7T + 1.21e4T^{2} \)
29 \( 1 + 275.T + 2.43e4T^{2} \)
31 \( 1 + 187.T + 2.97e4T^{2} \)
37 \( 1 - 309.T + 5.06e4T^{2} \)
41 \( 1 + 115.T + 6.89e4T^{2} \)
43 \( 1 - 112.T + 7.95e4T^{2} \)
47 \( 1 + 487.T + 1.03e5T^{2} \)
53 \( 1 + 359.T + 1.48e5T^{2} \)
59 \( 1 - 557.T + 2.05e5T^{2} \)
61 \( 1 + 481.T + 2.26e5T^{2} \)
67 \( 1 - 294.T + 3.00e5T^{2} \)
71 \( 1 + 935.T + 3.57e5T^{2} \)
73 \( 1 + 961.T + 3.89e5T^{2} \)
79 \( 1 + 377.T + 4.93e5T^{2} \)
83 \( 1 - 231.T + 5.71e5T^{2} \)
89 \( 1 - 597.T + 7.04e5T^{2} \)
97 \( 1 - 1.57e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.573219633548034396306846974985, −7.893305863039561420165538220770, −7.34750687393297453799215882308, −6.25052783781832585711412337927, −5.66347128757330277721586707197, −4.74052315973355834223341363678, −3.70102272290074327397773725387, −2.59779313657869640471284572270, −1.72333969997484305075650515690, −0.16682198511698577848817089620, 0.16682198511698577848817089620, 1.72333969997484305075650515690, 2.59779313657869640471284572270, 3.70102272290074327397773725387, 4.74052315973355834223341363678, 5.66347128757330277721586707197, 6.25052783781832585711412337927, 7.34750687393297453799215882308, 7.893305863039561420165538220770, 8.573219633548034396306846974985

Graph of the $Z$-function along the critical line