Properties

Label 2-2366-1.1-c3-0-25
Degree $2$
Conductor $2366$
Sign $1$
Analytic cond. $139.598$
Root an. cond. $11.8151$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 9.63·3-s + 4·4-s − 2.86·5-s + 19.2·6-s + 7·7-s − 8·8-s + 65.8·9-s + 5.72·10-s − 45.8·11-s − 38.5·12-s − 14·14-s + 27.5·15-s + 16·16-s + 11.4·17-s − 131.·18-s + 61.8·19-s − 11.4·20-s − 67.4·21-s + 91.6·22-s − 205.·23-s + 77.0·24-s − 116.·25-s − 374.·27-s + 28·28-s + 294.·29-s − 55.1·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.85·3-s + 0.5·4-s − 0.255·5-s + 1.31·6-s + 0.377·7-s − 0.353·8-s + 2.43·9-s + 0.180·10-s − 1.25·11-s − 0.927·12-s − 0.267·14-s + 0.474·15-s + 0.250·16-s + 0.163·17-s − 1.72·18-s + 0.746·19-s − 0.127·20-s − 0.700·21-s + 0.888·22-s − 1.86·23-s + 0.655·24-s − 0.934·25-s − 2.66·27-s + 0.188·28-s + 1.88·29-s − 0.335·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2366\)    =    \(2 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(139.598\)
Root analytic conductor: \(11.8151\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2366,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4174231904\)
\(L(\frac12)\) \(\approx\) \(0.4174231904\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
7 \( 1 - 7T \)
13 \( 1 \)
good3 \( 1 + 9.63T + 27T^{2} \)
5 \( 1 + 2.86T + 125T^{2} \)
11 \( 1 + 45.8T + 1.33e3T^{2} \)
17 \( 1 - 11.4T + 4.91e3T^{2} \)
19 \( 1 - 61.8T + 6.85e3T^{2} \)
23 \( 1 + 205.T + 1.21e4T^{2} \)
29 \( 1 - 294.T + 2.43e4T^{2} \)
31 \( 1 - 188.T + 2.97e4T^{2} \)
37 \( 1 + 244.T + 5.06e4T^{2} \)
41 \( 1 - 374.T + 6.89e4T^{2} \)
43 \( 1 - 15.2T + 7.95e4T^{2} \)
47 \( 1 + 184.T + 1.03e5T^{2} \)
53 \( 1 - 505.T + 1.48e5T^{2} \)
59 \( 1 - 174.T + 2.05e5T^{2} \)
61 \( 1 + 22.2T + 2.26e5T^{2} \)
67 \( 1 + 466.T + 3.00e5T^{2} \)
71 \( 1 - 574.T + 3.57e5T^{2} \)
73 \( 1 + 81.1T + 3.89e5T^{2} \)
79 \( 1 + 213.T + 4.93e5T^{2} \)
83 \( 1 + 948.T + 5.71e5T^{2} \)
89 \( 1 + 1.22e3T + 7.04e5T^{2} \)
97 \( 1 - 270.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.404692854984963723021172355047, −7.79958020512428248969058132546, −7.11597657833698438249048778598, −6.19975980033059464136961292753, −5.63751521907719623213638110918, −4.88321692944341227531736738748, −4.03223151738665914239567556540, −2.51969320845533305058008267974, −1.31701319478620311074714571982, −0.38857755905529916203730209909, 0.38857755905529916203730209909, 1.31701319478620311074714571982, 2.51969320845533305058008267974, 4.03223151738665914239567556540, 4.88321692944341227531736738748, 5.63751521907719623213638110918, 6.19975980033059464136961292753, 7.11597657833698438249048778598, 7.79958020512428248969058132546, 8.404692854984963723021172355047

Graph of the $Z$-function along the critical line