Properties

Label 2-2366-1.1-c3-0-153
Degree $2$
Conductor $2366$
Sign $1$
Analytic cond. $139.598$
Root an. cond. $11.8151$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 8.17·3-s + 4·4-s + 18.4·5-s − 16.3·6-s + 7·7-s − 8·8-s + 39.8·9-s − 36.8·10-s + 31.5·11-s + 32.6·12-s − 14·14-s + 150.·15-s + 16·16-s + 106.·17-s − 79.6·18-s − 107.·19-s + 73.6·20-s + 57.2·21-s − 63.1·22-s − 86.5·23-s − 65.3·24-s + 213.·25-s + 104.·27-s + 28·28-s − 174.·29-s − 300.·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.57·3-s + 0.5·4-s + 1.64·5-s − 1.11·6-s + 0.377·7-s − 0.353·8-s + 1.47·9-s − 1.16·10-s + 0.865·11-s + 0.786·12-s − 0.267·14-s + 2.58·15-s + 0.250·16-s + 1.52·17-s − 1.04·18-s − 1.29·19-s + 0.822·20-s + 0.594·21-s − 0.611·22-s − 0.784·23-s − 0.556·24-s + 1.70·25-s + 0.747·27-s + 0.188·28-s − 1.12·29-s − 1.83·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2366\)    =    \(2 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(139.598\)
Root analytic conductor: \(11.8151\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2366,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.120093554\)
\(L(\frac12)\) \(\approx\) \(5.120093554\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
7 \( 1 - 7T \)
13 \( 1 \)
good3 \( 1 - 8.17T + 27T^{2} \)
5 \( 1 - 18.4T + 125T^{2} \)
11 \( 1 - 31.5T + 1.33e3T^{2} \)
17 \( 1 - 106.T + 4.91e3T^{2} \)
19 \( 1 + 107.T + 6.85e3T^{2} \)
23 \( 1 + 86.5T + 1.21e4T^{2} \)
29 \( 1 + 174.T + 2.43e4T^{2} \)
31 \( 1 - 39.6T + 2.97e4T^{2} \)
37 \( 1 - 271.T + 5.06e4T^{2} \)
41 \( 1 - 419.T + 6.89e4T^{2} \)
43 \( 1 - 188.T + 7.95e4T^{2} \)
47 \( 1 - 174.T + 1.03e5T^{2} \)
53 \( 1 + 472.T + 1.48e5T^{2} \)
59 \( 1 + 681.T + 2.05e5T^{2} \)
61 \( 1 + 389.T + 2.26e5T^{2} \)
67 \( 1 - 222.T + 3.00e5T^{2} \)
71 \( 1 + 47.1T + 3.57e5T^{2} \)
73 \( 1 - 792.T + 3.89e5T^{2} \)
79 \( 1 + 1.10e3T + 4.93e5T^{2} \)
83 \( 1 - 293.T + 5.71e5T^{2} \)
89 \( 1 - 935.T + 7.04e5T^{2} \)
97 \( 1 + 113.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.874696658409414432941803154207, −7.929542643777246275724423253561, −7.48629480407434162297927127195, −6.24428903033572481286122170517, −5.86694974521486058751398161307, −4.46566341447165566498125419368, −3.45718919838811334936020246087, −2.45848884925892731226714644366, −1.89851674707037128414034574532, −1.13301715860990150614052334150, 1.13301715860990150614052334150, 1.89851674707037128414034574532, 2.45848884925892731226714644366, 3.45718919838811334936020246087, 4.46566341447165566498125419368, 5.86694974521486058751398161307, 6.24428903033572481286122170517, 7.48629480407434162297927127195, 7.929542643777246275724423253561, 8.874696658409414432941803154207

Graph of the $Z$-function along the critical line